基于大数据的用户行为预测

随着智能手机的普及和APP形态的愈发丰富,移动设备的应用安装量急剧上升。用户在每天使用这些APP的过程中,也会产生大量的线上和线下行为数据。这些数据反映了用户的兴趣与需求,如果能够被深入挖掘并且合理利用,可以指导用户的运营。若能提前预测用户下一步的行为,甚至提前得知用户卸载、流失的可能性,则能更好地指导产品的优化以及用户的精细化运营。



大数据服务商个推旗下的应用统计产品“个数”,可以从用户属性、使用行为、行业对比等多指标多维度对APP进行全面统计分析。除了基础统计、渠道统计、埋点统计等功能外,个数的一大特色能力是——可基于大数据进行用户行为预测,帮助运营者预测用户流失、卸载、付费的可能性,从而助力APP的精细化运营以及全生命周期管理。

开发者在实践的过程中,基于大数据进行用户行为预测会有两大难点:第一,开发者需要使用多种手段对目标问题进行分解;第二,数据在特定的问题上会有不同的表现。

“个数”利用数据分析建模,对用户行为进行预测的大概流程包括以下几点:

1、目标问题分解

(1)明确需要进行预测的问题;
(2)明确未来一段时间的跨度。

2、分析样本数据

(1)提取出所有用户的历史付费记录,这些付费记录可能仅占所有记录的千分之几,数据量会非常小;
(2)分析付费记录,了解付费用户的构成,比如年龄层次、性别、购买力和消费的产品类别等;
(3)提取非付费用户的历史数据,这里可以根据产品的需求,添加条件、或无条件地进行提取,比如提取活跃并且非付费用户,或者不加条件地直接进行提取;
(4)分析非付费用户的构成。

3、构建模型的特征

(1)原始的数据可能能够直接作为特征使用;
(2)有些数据在变换后,才会有更好的使用效果,比如年龄,可以变换成少年、中年、老年等特征;
(3)交叉特征的生成,比如“中年”和“女性”两种特征,就可以合并为一个特征进行使用。

4、计算特征的相关性

(1)计算特征饱和度,进行饱和度过滤;
(2)计算特征IV、卡方等指标,用以进行特征相关性的过滤。

5、选用相关的模型进行建模

(1)选择适当的参数进行建模;
(2)模型训练好后,统计模型的精确度、召回率、AUC等指标,来评价模型;
(3)如果觉得模型的表现可以接受,就可以在验证集上做验证,验证通过后,进行模型保存和预测。

6、预测

加载上述保存的模型,并加载预测数据,进行预测。

7、监控

最后,运营人员还需要对每次预测的结果进行关键指标监控,及时发现并解决出现的问题,防止出现意外情况,导致预测无效或预测结果出现偏差。

以上就是“个数”对用户行为进行预测的整体流程。总的来说,分析和建模的关键在于大数据的收集和对大数据细节的处理。在进行用户行为预测的整个过程中,可供技术人员选择的方法和模型都有很多,而对于实际的应用者来说,没有最好的选择,只有更合适的选择。

原文地址:http://blog.51cto.com/13031991/2335162

时间: 2024-10-12 22:00:32

基于大数据的用户行为预测的相关文章

基于大数据的用户行为预测在前端性能优化上的应用

首先,我得说,这篇文章有点标题党了,其实内容并没有标题看起来那么高大上.其次,本文只是做一个技术方案可能性的探讨,并没有提供完善的解决方案,至多给了一个Demo供参考. 目的 如需转载,请注明转自:http://www.cnblogs.com/silenttiger/p/4929841.html 前端性能优化,我觉得最主要的目的就两个:1.提升页面加载速度:2.节约服务器资源. 这里特别提一下节约服务器资源,很多人在做前端性能优化的时候,往往只考虑前端性能的问题,而完全忽视前端的性能优化对后端服

蔡先生论道大数据之十三:预测企业未来

每次技术变革企业包括个人都需要做出适应,现在我们处于新一轮实际革命的时代节点上,从小数据时代到大数据时代的前叶. 那么企业面对大数据需要做出什么样的变革呢? 又存在什么样的挑战呢? 首先, 决策方式的改变,传统运作管理在变成大数据管理,越来越多的传统决策在变成基于数据分析的决策.其次,企业不仅要关心内部信息整合,比如CRM\ERP 还要关心外部数据比如用户评论\口碑\商誉\留言等,现在出现的新的趋势就是通过内部和外部的数据整合来决定企业的管理决策.最后,过去企业关心能够创造什么价值,是生产电视机

H2O是开源基于大数据的机器学习库包

H2O是开源基于大数据的机器学习库包 H2O能够让Hadoop做数学,H2O是基于大数据的 统计分析 机器学习和数学库包,让用户基于核心的数学积木搭建应用块代码,采取类似R语言 Excel或JSON等熟悉接口,使的BigData爱好者和专家可以利用一系列简单的先进算法对数据集进行探索,建模和评估.数据收集是很容易,但是决 策是很难的. H2O使得能用更快更好的预测模型源实现快速和方便地数据的挖掘. H2O愿意将在线评分和建模融合在一个单一平台上. H2O提供了机器学习的培训手册供学习:H2O训练

基于大数据技术之电视收视率企业项目实战(hadoop+Spark)张长志(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

基于大数据技术推荐系统算法案例实战视频教程(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

新的学习路径、学习想法和思路的头脑风暴:基于泰迪云课程,对数据分析和数据建模,机器学习算法进行统筹,接着是基于大数据的数据挖掘、进度、

新的学习路径.学习想法和思路的头脑风暴:基于泰迪云课程,对数据分析和数据建模,机器学习算法进行统筹,接着是基于大数据的数据挖掘.进度. 泰迪云代码已经下载,对相关内容进行应用和学习 想通视频之后对代码进行研究 专家经验.优秀经验工程师经验转化. 从论文中第三四大章,读取 设计和解决问题流程 找论文.使用benchmark 上有收录论文.找到论文.不建议自己先去想. 以后一定 偏分析,偏挖掘.偏决策的.不是执行者,执行者是最low的,最强的解决方案,都按论文来找. 高端会议.每年会出来十多篇研究成

基于大数据技术的手机用户画像与征信研究

内容提要:手机用户画像是电信运营商实现“数据驱动业务与运营”的重要举措.首先,介绍了手机用户画像过程中对个人隐私保护的方法,然后分析手机用户画像的数据来源与大数据实现技术,最后,通过数据样本实例分析手机用户画像在个人征信中的应用. 引言 随着计算机网络技术的不断发展,“数据即资源”的大数据时代已经来临.用户画像是电信运营商为了避免管道化风险,实现“数据驱动业务与运营”的重要举措.用户画像与应用大数据技术对客户分类密切相关,是单个客户的众多属性标签的累积:另一方面,在运营商涉足的消费金融领域,对手

大数据语义分析开启“智能预测客户”时代

近年来,各大大数据服务提供商越来越关注利用人工智能(AI)来帮助分析大规模的数据,从而获得预测性的洞察,从而帮助各企事业单位更好的了解客户情况.虽然这背后的相关技术--语义精准搜索分析算法几年前就已诞生,但直到最近才能够在足够广泛.足够快速地应用到大规模数据挖掘并发挥它最大潜能.可以预见,数据科学家的部分工作将会越来越自动化,边际成本将越来越低,从而可以极大提高生产力. 智能预测各企事业单位客户在做的事情就像B端的搜索引擎,我们用百度这样的C端工具获取我们要的信息,而企业可以通过预测服务系统搜到

基于大数据的线上线下电商用户数据挖掘研究

From:http://www.thebigdata.cn/JieJueFangAn/11932p2.html Online-to-Offline( 简称 O2O)电子商务模式,是一个连接线上用户和线下商家的多边平台商业模式. O2O 商业模式将实体经济与线上资源融合在一起,使网络成为实体经济延伸到虚拟世界的渠道; 线下商业可以到线上挖掘和吸引客源,而消费者可以在线上筛选商品和服务并完成支付,再到实体店完成余下消费. 它最先由 TrialPay 创始人 AlexRampell提出,在 2006