嵌入式Linux驱动学习之路(二十三)NAND FLASH驱动程序

NAND FLASH是一个存储芯片。

在芯片上的DATA0~DATA7上既能传输数据也能传输地址。

  当ALE为高电平时传输的是地址。

  当CLE为高电平时传输的是命令。

  当ALE和CLE都为低电平时传输的是数据。

将数据发给nand Flash后,在发送第二次数据之前还要判断芯片是否处于空闲状态。一般是通过引脚RnB来判断,一般是高电平代表就绪,低电平代表正忙。

操作Nand Flash的一般步骤是:

  1. 发命令

    选中芯片

    CLE设置为高电平

    在DATA0~DATA7上输出命令值

    发出一个写脉冲

  2. 发地址

    选中芯片

    ALE为高电平

    在DATA0~DATA7上传输数据

    发出一个写脉冲

  3. 发数据

    选中芯片

    发出读脉冲

    读取DATA0~DATA7上的数据。

使用UBOOT来体验NAND FLASH的操作:

读ID

    选中        NFCONT的bit1设置为0      md.l   0x4e000004 1; mw.l 0x4e000004 1

    发出命令0x90     NFCMMD=0X90          mw.b  0x4e000008  0x90;

    发出地址0x00     NFADDR=0X00           mw.b  0x4e00000C  0x00;

    读取数据得到0XEC     val=NFDATA          md.b   0x4e000010  1

    读取数据得到device code val=NFDATA         md.b  0x4e000010  1

    退出读ID的状态      NFCMMD=0XFF      mw.b  0x4e000008  0xff

NAND FLASH驱动程序层次

看内核启动信息

S3C24XX NAND Driver, (c) 2004 Simtec Electronics
s3c2440-nand s3c2440-nand: Tacls=3, 30ns Twrph0=7 70ns, Twrph1=3 30ns
NAND device: Manufacturer ID: 0xec, Chip ID: 0xda (Samsung NAND 256MiB 3,3V 8-bit)
Scanning device for bad blocks
Bad eraseblock 256 at 0x02000000
Bad eraseblock 257 at 0x02020000
Bad eraseblock 319 at 0x027e0000
Bad eraseblock 606 at 0x04bc0000
Bad eraseblock 608 at 0x04c00000
Creating 4 MTD partitions on "NAND 256MiB 3,3V 8-bit":
0x00000000-0x00040000 : "bootloader"
0x00040000-0x00060000 : "params"
0x00060000-0x00260000 : "kernel"
0x00260000-0x10000000 : "root"

搜"S3C24XX NAND Driver"
  S3c2410.c (drivers\mtd\nand)

s3c2410_nand_inithw
s3c2410_nand_init_chip
nand_scan  // drivers/mtd/nand/nand_base.c 根据nand_chip的底层操作函数识别NAND FLASH,构造mtd_info
    nand_scan_ident
        nand_set_defaults
            if (!chip->select_chip)
                chip->select_chip = nand_select_chip; // 默认值不适用

            if (chip->cmdfunc == NULL)
                chip->cmdfunc = nand_command;
                                    chip->cmd_ctrl(mtd, command, ctrl);
            if (!chip->read_byte)
                chip->read_byte = nand_read_byte;
                                    readb(chip->IO_ADDR_R);
            if (chip->waitfunc == NULL)
                chip->waitfunc = nand_wait;
                                    chip->dev_ready

        nand_get_flash_type
            chip->select_chip(mtd, 0);
            chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
            *maf_id = chip->read_byte(mtd);
            dev_id = chip->read_byte(mtd);
    nand_scan_tail
            mtd->erase = nand_erase;
            mtd->read = nand_read;
            mtd->write = nand_write;
s3c2410_nand_add_partition
    add_mtd_partitions
        add_mtd_device
            list_for_each(this, &mtd_notifiers) { // 问. mtd_notifiers在哪设置
                                                  // 答. drivers/mtd/mtdchar.c,mtd_blkdev.c调用register_mtd_user
                struct mtd_notifier *not = list_entry(this, struct mtd_notifier, list);
                not->add(mtd);
                // mtd_notify_add  和 blktrans_notify_add
                先看字符设备的mtd_notify_add
                        class_device_create
                        class_device_create
                再看块设备的blktrans_notify_add
                    list_for_each(this, &blktrans_majors) { // 问. blktrans_majors在哪设置
                                                            // 答. drivers\mtd\mdblock.c或mtdblock_ro.c   register_mtd_blktrans
                        struct mtd_blktrans_ops *tr = list_entry(this, struct mtd_blktrans_ops, list);
                        tr->add_mtd(tr, mtd);
                                mtdblock_add_mtd (drivers\mtd\mdblock.c)
                                    add_mtd_blktrans_dev
                                        alloc_disk
                                        gd->queue = tr->blkcore_priv->rq; // tr->blkcore_priv->rq = blk_init_queue(mtd_blktrans_request, &tr->blkcore_priv->queue_lock);
                                        add_disk            

驱动程序代码:

/*
* drivers\mtd\nand\s3c2410.c
* drivers\mtd\nand\at91_nand.c
*/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>

#include <asm/arch/regs-nand.h>
#include <asm/arch/nand.h>

struct nand_chip *s3c_nand;
struct mtd_info *s3c_mtd;
struct clk *clk;
struct s3c_nand_regs{
    unsigned long nfconf;
    unsigned long nfcont;
    unsigned long nfcmd;
    unsigned long nfaddr;
    unsigned long nfdata;
    unsigned long nfeccd0;
    unsigned long nfeccd1;
    unsigned long nfeccd;
    unsigned long nfstat;
    unsigned long nfestat0;
    unsigned long nfestat1;
    unsigned long nfeecc0;
    unsigned long nfeecc1;
    unsigned long nfsecc;
    unsigned long nfsblk;
    unsigned long nfeblk;
};

static struct mtd_partition s3c_nand_parts[] = {
    [0] = {
        .name   = "bootloader",
        .size   = 0x00040000,
        .offset= 0,
    },
    [1] = {
        .name   = "params",
        .offset = MTDPART_OFS_APPEND,
        .size   = 0x00020000,
    },
    [2] = {
        .name   = "kernel",
        .offset = MTDPART_OFS_APPEND,
        .size   = 0x00200000,
    },
    [3] = {
        .name   = "root",
        .offset = MTDPART_OFS_APPEND,
        .size   = MTDPART_SIZ_FULL,
    }

};

static volatile struct s3c_nand_regs *nand_regs;

static void s3c2440_select_chip(struct mtd_info *mtd, int chipnr )
{
    if(chipnr == -1 )
    {
        /* 取消选中 */
        nand_regs->nfcont |= (1<<1);
    }
    else
    {
        /* 选中 NFCONT^1 设置为1 */
        nand_regs->nfcont &= ~(1<<1);
    }
}

static void s3c2440_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{

    if (cmd == NAND_CMD_NONE)
        return;

    if (ctrl & NAND_CLE)
    {
        /* 发命令 */
        nand_regs->nfcmd = cmd;
    }
    else
    {
        /* 发地址 */
        nand_regs->nfaddr = cmd;
    }
}

static int s3c2440_dev_ready(struct mtd_info *mtd)
{
    /*  */
    return (nand_regs->nfstat & (1<<0));
}

static int s3c_nand_init(void)
{
    /* 分配一个nand_chip结构体 */
    s3c_nand = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);

    nand_regs = ioremap(0x4e000000,sizeof(struct s3c_nand_regs));

    clk = clk_get(NULL,"nand");
    clk_enable(clk);
    /* 设置 */
    s3c_nand->select_chip = s3c2440_select_chip;
    s3c_nand->cmd_ctrl = s3c2440_nand_cmd_ctrl;
    s3c_nand->IO_ADDR_R = (void *)&nand_regs->nfdata;
    s3c_nand->IO_ADDR_W = (void *)&nand_regs->nfdata;
    s3c_nand->dev_ready = s3c2440_dev_ready;
    s3c_nand->ecc.mode  = NAND_ECC_SOFT;

    /* 硬件相关的操作:根据nand Flash的手册设置时间参数 */
    /* HCLK = 100MHz */
    /* TACLS: 发出cle/ale之后多长时间才发出nWE信号 */
    /* TWRPHO: nWE的脉冲宽度 */
    nand_regs->nfconf = (1<<8);
    nand_regs->nfcont = 0x03;

    /* 使用:nand_scan */
    s3c_mtd = kzalloc( sizeof(struct mtd_info), GFP_KERNEL );
    s3c_mtd->owner = THIS_MODULE;
    s3c_mtd->priv = s3c_nand;
    nand_scan(s3c_mtd,1); /* 扫描识别 */

    /* add_mtd_partitions */
    add_mtd_partitions(s3c_mtd,s3c_nand_parts,4);

    //add_mtd_device(s3c_mtd);  //整个flash只有一个分区的话可以用这个
    return 0;
}

static void s3c_nand_exit(void)
{
    del_mtd_partitions(s3c_mtd);
    kfree(s3c_mtd);
    iounmap(nand_regs);
    kfree(s3c_nand);

}

module_init(s3c_nand_init);
module_exit(s3c_nand_exit);
MODULE_LICENSE("GPL");

在添加这个内核模块的时候,首先卸载内核中的nand Flash驱动。

->Device Drivers

  ->Memory Technology Device (MTD) support

    ->NAND Device Support

sd

时间: 2024-10-27 00:27:36

嵌入式Linux驱动学习之路(二十三)NAND FLASH驱动程序的相关文章

嵌入式Linux驱动学习之路(二十六)DM9000C网卡驱动程序

基于DM9000C的原厂代码修改dm9000c的驱动程序. 首先确认内存的基地址 iobase. 确定中断号码. 打开模块的初始化函数定义. 配置内存控制器的相应时序(结合DM9000C.C的手册). 程序代码: /* dm9ks.c: Version 2.08 2007/02/12 A Davicom DM9000/DM9010 ISA NIC fast Ethernet driver for Linux. This program is free software; you can redi

Linux嵌入式驱动学习之路(二十一)字符设备驱动程序总结和块设备驱动程序的引入

字符设备驱动程序 应用程序是调用C库中的open read write等函数.而为了操作硬件,所以引入了驱动模块. 构建一个简单的驱动,有一下步骤. 1. 创建file_operations 2. 申请设备号 3. 注册字符设备驱动, 4. 驱动入口 5. 驱动出口 检查数据是否到来的方式: 1. 查询方式 2. 休眠唤醒方式 如果设备出现异常而无法唤醒时,则将永远处于休眠状态. 3. poll机制 如果没有被唤醒,则在一定时间内可自己唤醒. 4. 异步通知(信号) 而以上的几种方式通用性不高,

Linux系统学习之路和常用命令及其他系统相关内容

Linux系统学习之路 目录 Linux系统学习之路[第一篇]:Linux目录和基础知识 Linux系统学习之路[第二篇]:文件操作,文件查看,find查找 Linux系统学习之路[第三篇]:grep,vim,压缩功能详解 Linux系统学习之路[第四篇]:mount,rpm,yum,yum组讲解 Linux系统学习之路[第五篇]:用户和用户组管理 Linux系统学习之路[第六篇]:权限管理 Linux系统学习之路[第七篇]:磁盘和文件管理 Linux系统学习之路[第八篇]:LVM逻辑卷和RAI

linux驱动开发重点关注内容--摘自《嵌入式Linux驱动模板精讲与项目实践》

本文摘自本人拙著 <嵌入式Linux驱动模板精讲与项目实践> 初步看起来Linux设备驱动开发涉及内容非常多,而须要实现驱动的设备千差万别.事实上做一段时间驱动之后回首看来主要就是下面几点: (1)对驱动进行分类.先归纳为哪个类型的驱动.归类正确再利用内核提供的子系统进行开发,往往会发现事实上非常多通用的事情内核已经帮我们做了,一个优秀的驱动project师应该最大程度上利用内核的资源.内核已经实现的毕竟稳定性强.可移植性高. (2)找到内核的提供的子系统.接下来就是要制作该子系统对该类设备提

嵌入式Linux操作系统学习规划

开发板用友善之臂的吧mini2440 连3.5寸屏500块钱的样子有好几张DVD学习光盘 这款口碑比较高 嵌入式Linux操作系统学习规划ARM+LINUX路线,主攻嵌入式Linux操作系统及其上应用软件开发目标: (1) 掌握主流嵌入式微处理器的结构与原理(初步定为arm9) (2) 必须掌握一个嵌入式操作系统 (初步定为uclinux或linux,版本待定) (3) 必须熟悉嵌入式软件开发流程并至少做一个嵌入式软件项目. 从事嵌入式软件开发的好处是: (1)目前国内外这方面的人都很稀缺.这一

嵌入式Linux驱动开发实战视频教程

嵌入式Linux驱动开发实战教程(内核驱动.看门狗技术.触摸屏.视频采集系统)适合人群:高级课时数量:109课时用到技术:嵌入式 Linux涉及项目:驱动开发.看门狗技术.触摸屏.视频采集咨询qq:1840215592 课程介绍:本课程即是针对有兴趣学习嵌入式linux驱动开发又不知道从何处着实开始学习嵌入式linux驱动开发的在校同学以及社会在职人员.本课程采用理论教学与实验相结合的方式,软件与硬件相结合的方式,重点给大家讲解嵌入式linux驱动开发的方法,系统地介绍嵌入式linux驱动开发的

嵌入式 Linux根文件系统移植(二)——根文件系统简介

嵌入式 Linux根文件系统移植(二)--根文件系统简介 根文件系统是内核启动时挂载的第一个文件系统,内核代码映像文件保存在根文件系统中,而系统引导启动程序会在根文件系统挂载之后从中把一些基本的初始化脚本和服务等加载到内存中去运行. 一.嵌入式设备文件系统 在嵌入式Linux应用中,主要的存储设备为 RAM(DRAM, SDRAM)和ROM(常采用FLASH存储器),常用的基于存储设备的文件系统类型包括:jffs2, yaffs, cramfs, romfs, ramdisk, ramfs/tm

嵌入式linux开发uboot移植(二)——uboot工程源码目录分析

嵌入式linux开发uboot移植(二)--uboot工程源码目录分析 本文分析的uboot为uboot_smdkv210,是三星官方发布的基于S5PV210评估开发板对应的uboot. 一.uboot源码目录结构解析 1.cpu 本文件夹下的子文件与处理器相关,每个文件夹代表一种CPU系列.每个子目录中都包括cpu.c.interrupts.c.start.S文件. cpu.c主要用于初始化CPU.设置指令Cache和数据Cache等 interrupt.c主要用于设置系统的各种中断和异常 s

嵌入式Linux裸机开发(十二)——iNand简介

嵌入式Linux裸机开发(十二)--iNand简介 一.iNand简介 iNand是SanDisk公司研发的存储芯片,可以看成SD卡或MMC卡芯片化. iNand是SanDisk公司符合eMMC协议的芯片系列名称,内部采用MLC存储颗粒.iNand接口电路设计复杂,功能完善,提供eMMC接口协议,与SoC的eMMC控制器配对通信. 相对MLC NandFlash,iNAND有以下优点: 1.提高性能 A.减少SOC的工作量,节约SOC资源. 如果使用MLC做存储,SOC要参与FLASH的坏块管理