usaco-Section 3.1-Stamps

Stamps

Given a set of N stamp values (e.g., {1 cent, 3 cents}) and an upper limit K to the number of stamps that can fit on an envelope, calculate the largest unbroken list of postages from 1 cent to M cents that can be created.

For example, consider stamps whose values are limited to 1 cent and 3 cents; you can use at most 5 stamps. It‘s easy to see how to assemble postage of 1 through 5 cents (just use that many 1 cent stamps), and successive values aren‘t much harder:

  • 6 = 3 + 3
  • 7 = 3 + 3 + 1
  • 8 = 3 + 3 + 1 + 1
  • 9 = 3 + 3 + 3
  • 10 = 3 + 3 + 3 + 1
  • 11 = 3 + 3 + 3 + 1 + 1
  • 12 = 3 + 3 + 3 + 3
  • 13 = 3 + 3 + 3 + 3 + 1.

However, there is no way to make 14 cents of postage with 5 or fewer stamps of value 1 and 3 cents. Thus, for this set of two stamp values and a limit of K=5, the answer is M=13.

The most difficult test case for this problem has a time limit of 3 seconds.

PROGRAM NAME: stamps

INPUT FORMAT

Line 1: Two integers K and N. K (1 <= K <= 200) is the total number of stamps that can be used. N (1 <= N <= 50) is the number of stamp values.
Lines 2..end: N integers, 15 per line, listing all of the N stamp values, each of which will be at most 10000.

SAMPLE INPUT (file stamps.in)

5 2
1 3

OUTPUT FORMAT

Line 1: One integer, the number of contiguous postage values starting at 1 cent that can be formed using no more than K stamps from the set.

SAMPLE OUTPUT (file stamps.out)

13

一道简单的dp,思想就是记忆化。

代码如下:
/*
ID: yizeng21
PROB: stamps
LANG: C++
*/
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[2000005];
int maxx;
int max(int i,int j){
    return i>j?i:j;
}
int min(int i,int j){
    return i<j?i:j;
}
int a[10000];
int main(){
    freopen("stamps.in","r",stdin);
    freopen("stamps.out","w",stdout);
    int m,n;
    scanf("%d%d",&m,&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        maxx=max(maxx,a[i]);
    }
    memset(dp,10,sizeof(dp));

    dp[0]=0;
    for(int j=1;j<=n;j++)
        for(int i=a[j];i<=maxx*m;i++){
            dp[i]=min(dp[i],dp[i-a[j]]+1);
        }
    int tot=0;
    while(dp[tot]<=m)tot++;
    printf("%d\n",tot-1);
}
时间: 2024-10-25 12:55:40

usaco-Section 3.1-Stamps的相关文章

USACO Section 2.1 Healthy Holsteins

/* ID: lucien23 PROG: holstein LANG: C++ */ #include <iostream> #include <fstream> #include <vector> using namespace std; bool compFun(int x, int y) { int temp, i = 0; while (true) { temp = 1 << i; if (temp&x > temp&y) {

USACO Section 2.2 Party Lamps

/* ID: lucien23 PROG: lamps LANG: C++ */ /* * 此题的技巧之处就是需要注意到任何button只要按下2的倍数次就相当于没有按 * 所以其实只需要考虑4个按钮,每个按钮是否被有效按下过一次就好 * 直接使用枚举法,一共只有2^4=16种情况 * 对于每种情况需要知道被按下的有效次数(也就是被按下过的按钮数),必须满足 * (C-有效次数)%2=0才行,这样其他次数才能视为无效 * 然后验证各种情况是否符合要求,将符合要求的情况按序输出即可 */ #inc

USACO Section 2.2 Runaround Numbers

/* ID: lucien23 PROG: runround LANG: C++ */ #include <iostream> #include <fstream> #include <cstring> using namespace std; int main() { ifstream infile("runround.in"); ofstream outfile("runround.out"); if(!infile || !

USACO Section 2.2 Preface Numbering

/* ID: lucien23 PROG: preface LANG: C++ */ #include <iostream> #include <fstream> #include <string> #include <map> using namespace std; int main() { ifstream infile("preface.in"); ofstream outfile("preface.out")

USACO Section 2.1 Sorting a Three-Valued Sequence

/* ID: lucien23 PROG: sort3 LANG: C++ */ #include <iostream> #include <fstream> #include <vector> #include <algorithm> using namespace std; void exchange(int nums[], int begin, int end, int N, int x); int sum = 0; int main() { ifst

USACO Section 1.1 Your Ride Is Here

原题: Your Ride Is Here It is a well-known fact that behind every good comet is a UFO. These UFOs often come to collect loyal supporters from here on Earth. Unfortunately, they only have room to pick up one group of followers on each trip. They do, how

[IOI1996] USACO Section 5.3 Network of Schools(强连通分量)

nocow上的题解很好. http://www.nocow.cn/index.php/USACO/schlnet 如何求强连通分量呢?对于此题,可以直接先用floyd,然后再判断. ---------------------------------------------------------------------------------- #include<cstdio> #include<iostream> #include<algorithm> #includ

USACO Section 5.3 Big Barn(dp)

USACO前面好像有类似的题目..dp(i,j)=min(dp(i+1,j),dp(i+1,j+1),dp(i,j+1))+1  (坐标(i,j)处无tree;有tree自然dp(i,j)=0) .dp(i,j)表示以坐标(i,j)为左上角的barn边长最大值,dp(i+1,j),dp(i,j+1)分别表示向右和向下能扩展的最大边长,但是以此为正方形时,右下方的一个格子没有考虑到,所以就+个dp(i+1,j+1).边界为:dp(i,j)=1(i==n-1或j==n-1). -----------

USACO Section 3.3 Camlot

BFS.先算出棋盘上每个点到各个点knight需要的步数:然后枚举所有点,其中再枚举king是自己到的还是knight带它去的(假如是knight带它的,枚举king周围的2格(网上都这么说,似乎是个结论?还是usaco数据太弱了?不过看跑出来的时间,全部枚举或许也可以)).一开始觉得挺麻烦的,不过只要思路清晰写起来应该也没多大问题.大概就是这样了. #include<cstdio> #include<iostream> #include<algorithm> #inc

USACO Section 1.1PROB Your Ride Is Here

题目传送门 不能提交哦   http://www.nocow.cn/index.php/Translate:USACO/ride /* ID: jusonal1 PROG: ride LANG: C++ */ #include <iostream> #include <fstream> #include <string> #include <cstdio> #include <algorithm> using namespace std; int