HYSBZ 2038 莫队算法

小Z的袜子(hose)

Time Limit:20000MS     Memory Limit:265216KB     64bit IO Format:%lld & %llu

Submit Status Practice HYSBZ 2038

Appoint description: 
System Crawler  (2016-07-13)

Description

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

Input

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

Output

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

Sample Input

6 41 2 3 3 3 22 61 33 51 6

Sample Output

2/50/11/14/15【样例解释】询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。【数据规模和约定】30%的数据中 N,M ≤ 5000;60%的数据中 N,M ≤ 25000;100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。

思路:

概率 = a*(a - 1) + b*(b - 1) ..../ n*(n-1);//这里a表示a出现的次数 其余类似

化简一下 = a^2 + b^2 + ...... - (a + b + c +...) / n * (n - 1);

根据公式统计一下。

/*
 * Author:  sweat123
 * Created Time:  2016/7/14 16:47:20
 * File Name: main.cpp
 */
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<time.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1<<30
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define key_value ch[ch[root][1]][0]
#define rson m+1,r,rt<<1|1
#define pi acos(-1.0)
using namespace std;
const int MAXN = 50010;
struct node{
    int l,r,id;
}q[MAXN];
int n,m,a[MAXN],pos[MAXN];
ll son[MAXN],mom[MAXN],ans,num[MAXN];
bool cmp(node a,node b){
    if(pos[a.l] == pos[b.l])return a.r < b.r;
    return pos[a.l] < pos[b.l];
}
void updata(int x,int val){
    ans -= (1LL * num[a[x]] * num[a[x]]);
    num[a[x]] += val;
    ans += (1LL * num[a[x]] * num[a[x]]);
}
int gcd(ll x,ll y){
    if(y == 0)return x;
    return gcd(y,x%y);
}
int main(){
    while(~scanf("%d%d",&n,&m)){
        int tp = ceil(sqrt(n));
        for(int i = 1; i <= n; i++){
            scanf("%d",&a[i]);
            pos[i] = (i - 1) / tp;//the position of i-th
        }
        memset(num,0,sizeof(num));
        for(int i = 1; i <= m; i++){
            scanf("%d%d",&q[i].l,&q[i].r);
            q[i].id = i;
        }
        sort(q+1,q+m+1,cmp);
        int pl,pr;
        pl = 1,pr = 0;
        ans = 0;
        for(int i = 1; i <= m; i++){
            if(q[i].l == q[i].r){
                son[q[i].id] = 0;
                mom[q[i].id] = 1;
                continue;
            } else{
                if(pr < q[i].r){
                    for(int j = pr + 1; j <= q[i].r; j++){
                        updata(j,1);
                    }
                    pr = q[i].r;
                } else{
                    for(int j = pr; j > q[i].r; j--){
                        updata(j,-1);
                    }
                    pr = q[i].r;
                }
                if(pl < q[i].l){
                    for(int j = pl; j < q[i].l; j++){
                        updata(j,-1);
                    }
                    pl = q[i].l;
                } else{
                    for(int j = pl - 1; j >= q[i].l; j--){
                        updata(j,1);
                    }
                    pl = q[i].l;
                }
                ll tp1 = ans - (q[i].r - q[i].l + 1);
                ll tp2 = 1LL * (q[i].r - q[i].l + 1) * (q[i].r - q[i].l);
                ll bf = gcd(tp1,tp2);
                son[q[i].id] = tp1/bf;
                mom[q[i].id] = tp2/bf;
                //cout<<q[i].id<<‘ ‘<<tp1/bf<<‘ ‘<<tp2/bf<<‘ ‘<<ans<<endl;
            }
        }
        for(int i = 1; i <= m; i++){
            printf("%lld/%lld\n",son[i],mom[i]);
        }
    }
    return 0;
}
时间: 2024-10-14 20:45:16

HYSBZ 2038 莫队算法的相关文章

HYSBZ 2038 小Z的袜子(hose) (莫队算法)

题意:中文题. 析:很著名的莫队算法,先把这个求概率的式子表达出来,应该是分子:C(x1, 2) + C(x2, 2) + C(x3, 2) + ... + C(xn, 2)  分母:C(n, 2),然后化成分数的表达形式,[x1(x1-1)+x2(x2-1)+...+xn(xn-1)] / (n*(n-1))  然后再化简得到 (sigma(xi*xi)  - n) / (n*(n-1)) ,然后就是对每个区间进行运算,离线,把所以的序列分成sqrt(n)块,然后用两个指针,进行对数据的计算.

bzoj 2038 [2009国家集训队]小Z的袜子(hose) 莫队算法

2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 10239  Solved: 4659[Submit][Status][Discuss] Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命--具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两

BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&amp;&amp;学习笔记】

2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Submit][Status][Discuss] Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两

BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Submit][Status][Discuss] Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只

莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 6475  Solved: 3004[Submit][Status][Discuss] Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜

【BZOJ3781、2038】莫队算法2水题

[BZOJ3781]小B的询问 题意:有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数 题解:初学莫队算法,差不多明白了用莫队的情况,对于这种离线的,区间长度+1时可O(1)修改答案的题,运用莫队算法是最水的 将n分成sqrt(n)块,将询问按照左端点所在的块为第一关键字,右端点的具体位置为第二关键字排序,然后用指针l,r不断暴力平移到询问的左右端点处,

BZOJ 2038 小Z的袜子(莫队算法)

莫队算法如果我们已知[l,r]的答案,能在O(1)时间得到[l+1,r]的答案以及[l,r-1]的答案,即可使用莫队算法.时间复杂度为O(n^1.5).如果只能在logn的时间移动区间,则时间复杂度是O(n^1.5*log n).其实就是找一个数据结构支持插入.删除时维护当前答案. 这道题的话我们很容易用数组来实现,做到O(1)的从[l,r]转移到[l,r+1]与[l+1,r]. 那么莫队算法怎么做呢?以下都是在转移为O(1)的基础下讨论的时间复杂度.另外由于n与m同阶,就统一写n.如果已知[l

BZOJ 2038 2009国家集训队 小Z的袜子 莫队算法

题目大意:给出一些袜子的排列顺序,每次问一段区间中有多少相同颜色的袜子对. 思路:莫队算法真是一个神奇的算法.首先,暴力枚举是O(n^2)的时间复杂度,这肯定是不行的.假如区间是保证不重合的,那么就可以将总的时间转移的复杂度降到O(n).很遗憾,题目中没有这个保证.于是乎,神秘的莫队就发明了一种神奇的算法. 对于每一个询问,我们将它看成一个平面上的点(x1,y1),同样的也就会有其他的点分布在平面中.假如还有一个点(x2,y2),那么我们从第一个区间转移到第二个区间需要改变的元素总数为|x1 -

(普通的)莫队算法简单介绍

莫队算法(由莫涛发明的)是一种离线的暴力算法(至少我这么认为).使用莫队算法的条件是,知道一个区间[l, r]的结果,那么也可以快速知道[l + 1, r],[l - 1, r], [l, r - 1], [l, r + 1]这四个区间的结果.于是可以想到,直接通过这样转移来解决一些问题.当然有些出题人机智,故意卡这种暴力,让你从头跑到尾然后从尾跑到头,于是时间复杂度高达O(n2) 而莫队算法就是通过改变处理询问的顺序来降低时间复杂度. 比如说现在知道一个区间[l1, r1],又要转移到[l2,