jieba分词器

始终觉得官方文档是最好的学习途径。嗯,我只是一个大自然的搬运工。

  1. 分词

  • jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
  • jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。
 1 # encoding=utf-8
 2 import jieba
 3
 4 seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
 5 print("Full Mode: " + "/ ".join(seg_list))  # 全模式
 6
 7 seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
 8 print("Default Mode: " + "/ ".join(seg_list))  # 精确模式
 9
10 seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
11 print(", ".join(seg_list))
12
13 seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
14 print(", ".join(seg_list))

结果:

1 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
2
3 【精确模式】: 我/ 来到/ 北京/ 清华大学
4
5 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
6
7 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

传送门https://github.com/fxsjy/jieba

原文地址:https://www.cnblogs.com/zenan/p/8568841.html

时间: 2024-10-13 03:30:10

jieba分词器的相关文章

Lucene.net(4.8.0) 学习问题记录五: JIEba分词和Lucene的结合,以及对分词器的思考

前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3.6.0 ,PanGu分词也是对应Lucene3.6.0版本的.不过好在Lucene.net 已经有了Core 2.0版本(4.8.0 bate版),而PanGu分词,目前有人正在做,貌似已经做完,只是还没有测试~,Lucene升级的改变我都会加粗表示. Lucene.net 4.8.0 https

11大Java开源中文分词器的使用方法和分词效果对比

本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断. 11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口: /** * 获取文本的所有分词结果, 对比不同分词器结果 * @author 杨尚川 */ public interface WordSegmenter {

9大Java开源中文分词器的使用方法和分词效果对比

本文的目标有两个: 1.学会使用9大Java开源中文分词器 2.对比分析9大Java开源中文分词器的分词效果 9大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口: /**  * 获取文本的所有分词结果, 对比不同分词器结果  * @author 杨尚川  */ public interface WordSegmenter {     /**      * 获取文本的所有分词结果      * @param text 文本      * @retur

cws_evaluation v1.1 发布,中文分词器分词效果评估对比

cws_evaluation是一个Java开源项目,用于对中文分词器的分词效果进行评估对比,目前支持9大中文分词器.分别是:word分词器.ansj分词器.mmseg4j分词器.ik-analyzer分词器.jcseg分词器.fudannlp分词器.smartcn分词器.jieba分词器.stanford分词器. 在1.1中,将9大中文分词器都升级到了最新版本,并采用Maven构建项目,增加了方便用户的运行脚本,且新增了交互式分词效果对比功能,同时也对分词代码做了优化和改进. 更多细节参考cws

Python自然语言处理学习——jieba分词

jieba--"结巴"中文分词是sunjunyi开发的一款Python中文分词组件,可以在Github上查看jieba项目. 要使用jieba中文分词,首先需要安装jieba中文分词,作者给出了如下的安装方法: 1.全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba 2.半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py

lucene分词器中的Analyzer,TokenStream, Tokenizer, TokenFilter

分词器的核心类: Analyzer:分词器 TokenStream: 分词器做好处理之后得到的一个流.这个流中存储了分词的各种信息,可以通过TokenStream有效的获取到分词单元. 以下是把文件流转换成分词流(TokenStream)的过程 首先,通过Tokenizer来进行分词,不同分词器有着不同的Tokenzier,Tokenzier分完词后,通过TokenFilter对已经分好词的数据进行过滤,比如停止词.过滤完之后,把所有的数据组合成一个TokenStream:以下这图就是把一个re

IK分词器 整合solr4.7 含同义词、切分词、停止词

IK分词器如果配置成 <fieldType name="text_ik" class="solr.TextField"> <analyzer type="index" isMaxWordLength="false" class="org.wltea.analyzer.lucene.IKAnalyzer"/> <analyzer type="query" is

solr5.5.4整合IK分词器

1.下载IK分词器支持5.5.4的     http://download.csdn.net/detail/wang_keng/9535491 2.需要把分析器的jar包添加到solr工程中的tomcat的WEB-INF/lib下   cp IKAnalyzer2012FF_u2.jar /usr/local/solr/tomcat/webapps/solr/WEB-INF/lib/ 3.需要把IKAnalyzer需要的扩展词典及停用词词典.配置文件复制到solr工程的WEB-INF/class

Lucene系列:(6)分词器

1.什么是分词器 采用一种算法,将中英文本中的字符拆分开来,形成词汇,以待用户输入关健字后搜索 2.为什么要分词器 因为用户输入的搜索的内容是一段文本中的一个关健字,和原始表中的内容有差别,但作为搜索引擎来讲,又得将相关的内容搜索出来,此时就得采用分词器来最大限度匹配原始表中的内容. 3.分词器工作流程 (1)按分词器拆分出词汇 (2)去除停用词和禁用词 (3)如果有英文,把英文字母转为小写,即搜索不分大小写 4.演示常用分词器测试 这里测试需要引入IKAnalyzer3.2.0Stable.j