『PyTorch』第十一弹_torch.optim优化器

一、简化前馈网络LeNet

import torch as t

class LeNet(t.nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.features = t.nn.Sequential(
            t.nn.Conv2d(3, 6, 5),
            t.nn.ReLU(),
            t.nn.MaxPool2d(2, 2),
            t.nn.Conv2d(6, 16, 5),
            t.nn.ReLU(),
            t.nn.MaxPool2d(2, 2)
        )
        # 由于调整shape并不是一个class层,
        # 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型
        self.classifiter = t.nn.Sequential(
            t.nn.Linear(16*5*5, 120),
            t.nn.ReLU(),
            t.nn.Linear(120, 84),
            t.nn.ReLU(),
            t.nn.Linear(84, 10)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(-1, 16*5*5)
        x = self.classifiter(x)
        return x

net = LeNet()

二、优化器基本使用方法

  1. 建立优化器实例
  2. 循环:
    1. 清空梯度
    2. 向前传播
    3. 计算Loss
    4. 反向传播
    5. 更新参数
from torch import optim

# 通常的step优化过程
optimizer = optim.SGD(params=net.parameters(), lr=1)
optimizer.zero_grad()  # net.zero_grad()

input_ = t.autograd.Variable(t.randn(1, 3, 32, 32))
output = net(input_)
output.backward(output)

optimizer.step()

三、网络模块参数定制

为不同的子网络参数不同的学习率,finetune常用,使分类器学习率参数更高,学习速度更快(理论上)。

1.经由构建网络时划分好的模组进行学习率设定,

# # 直接对不同的网络模块制定不同学习率
optimizer = optim.SGD([{‘params‘: net.features.parameters()}, # 默认lr是1e-5
                       {‘params‘: net.classifiter.parameters(), ‘lr‘: 1e-2}], lr=1e-5)

2.以网络层对象为单位进行分组,并设定学习率

# # 以层为单位,为不同层指定不同的学习率
# ## 提取指定层对象
special_layers = t.nn.ModuleList([net.classifiter[0], net.classifiter[3]])
# ## 获取指定层参数id
special_layers_params = list(map(id, special_layers.parameters()))
print(special_layers_params)
# ## 获取非指定层的参数id
base_params = filter(lambda p: id(p) not in special_layers_params, net.parameters())
optimizer = t.optim.SGD([{‘params‘: base_params},
                         {‘params‘: special_layers.parameters(), ‘lr‘: 0.01}], lr=0.001)

四、在训练中动态的调整学习率

‘‘‘调整学习率‘‘‘
# 新建optimizer或者修改optimizer.params_groups对应的学习率
# # 新建optimizer更简单也更推荐,optimizer十分轻量级,所以开销很小
# # 但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡
# ## optimizer.param_groups:长度2的list,optimizer.param_groups[0]:长度6的字典
print(optimizer.param_groups[0][‘lr‘])
old_lr = 0.1
optimizer = optim.SGD([{‘params‘: net.features.parameters()},
                       {‘params‘: net.classifiter.parameters(), ‘lr‘: old_lr*0.1}], lr=1e-5)

可以看到optimizer.param_groups结构,[{‘params‘,‘lr‘, ‘momentum‘, ‘dampening‘, ‘weight_decay‘, ‘nesterov‘},{……}],集合了优化器的各项参数。

原文地址:https://www.cnblogs.com/hellcat/p/8496727.html

时间: 2024-07-31 02:21:43

『PyTorch』第十一弹_torch.optim优化器的相关文章

『PyTorch』第十三弹_torch.nn.init参数初始化

初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进行补充. 除了之前的.data进行赋值,或者.data.初始化方式外,我们可以使用torch.nn.init进行初始化参数. from torch.nn import init linear = nn.Linear(3, 4) t.manual_seed(1) init.xavier_normal(

『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1 = nn.Conv2d(3, 6, 5)

『PyTorch』第十弹_循环神经网络

『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 对于torch中的RNN相关类,有原始和原始Cell之分,其中RNN和RNNCell层的区别在于前者一次能够处理整个序列,而后者一次只处理序列中一个时间点的数据,前者封装更完备更易于使用,后者更具灵活性.实际上RNN层的一种后端实现方式就是调用RNNCell来实现的. 一.nn.RNN import torch as t from torch import nn from torch.autograd import Variab

『PyTorch』第五弹_深入理解autograd_下:Variable梯度探究

查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和hook方法都是很强大的工具,更详细的用法参考官方api文档,这里举例说明基础的使用.推荐使用hook方法,但是在实际使用中应尽量避免修改grad的值. 求z对y的导数 x = V(t.ones(3)) w = V(t.rand(3),requires_grad=True) y = w.mul(x) z

『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性映射 from torch.autograd import Function class MultiplyAdd(Function): # <----- 类需要继承Function类 @staticmethod # <-----forward和backward都是静态方法 def forward(

『PyTorch』第六弹_最小二乘法的不同实现手段(待续)

PyTorch的Variable import torch as t from torch.autograd import Variable as V import matplotlib.pyplot as plt from IPython import display # 指定随机数种子 t.manual_seed(1000) def get_fake_data(batch_size=8): x = t.rand(batch_size,1)*20 y = x * 2 + 3 + 3*t.ran

『PyTorch』第三弹_自动求导

torch.autograd 包提供Tensor所有操作的自动求导方法. 数据结构介绍 autograd.Variable 这是这个包中最核心的类. 它包装了一个Tensor,并且几乎支持所有的定义在其上的操作.一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度,Variable有三个属性: 访问原始的tensor使用属性.data: 关于这一Variable的梯度则集中于 .grad: .creator反映了创建者,标识了是否由用户使用.Variable直接创建(No

『PyTorch』第五弹_深入理解Tensor对象_中上:索引

一.普通索引 示例 a = t.Tensor(4,5) print(a) print(a[0:1,:2]) print(a[0,:2]) # 注意和前一种索引出来的值相同,shape不同 print(a[[1,2]]) # 容器索引 3.3845e+15 0.0000e+00 3.3846e+15 0.0000e+00 3.3845e+15 0.0000e+00 3.3845e+15 0.0000e+00 3.3418e+15 0.0000e+00 3.3845e+15 0.0000e+00 3

『PyTorch』第五弹_深入理解Tensor对象_中下:数学计算以及numpy比较

一.简单数学操作 1.逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域. a = t.arange(0,6).view(2,3) print("a:",a) print("t.cos(a):",t.cos(a)) print("a % 3:",a % 3) # t.fmod(a, 3) print("a ** 2:",a ** 2) # t.po