几个有关Hadoop自带的性能测试工具的应用

http://www.talkwithtrend.com/Question/177983-1247453

一些测试的描述如下内容最为详细,供你参考:

测试对于验证系统的正确性、分析系统的性能来说非常重要,但往往容易被我们所忽视。为了能对系统有更全面的了解、能找到系统的瓶颈所在、能对系统性能做更好的改进,打算先从测试入手,学习Hadoop几种主要的测试手段。本文将分成两部分:第一部分记录如何使用Hadoop自带的测试工具进行测试;第二部分记录Intel开放的Hadoop Benchmark Suit: HiBench的安装及使用。

1. Hadoop基准测试

Hadoop自带了几个基准测试,被打包在几个jar包中,如hadoop-test.jar和hadoop-examples.jar,在Hadoop环境中可以很方便地运行测试。本文测试使用的Hadoop版本是cloudera的hadoop-0.20.2-cdh3u3。

在测试前,先设置好环境变量:

$ export $HADOOP_HOME=/home/hadoop/hadoop
$ export $PATH=$PATH:$HADOOP_HOME/bin

使用以下命令就可以调用jar包中的类:

$ hadoop jar $HADOOP_HOME/xxx.jar

(1). Hadoop Test

当不带参数调用hadoop-test-0.20.2-cdh3u3.jar时,会列出所有的测试程序:

$ hadoop jar $HADOOP_HOME/hadoop-test-0.20.2-cdh3u3.jar
An example program must be given as the first argument.
Valid program names are:
  DFSCIOTest: Distributed i/o benchmark of libhdfs.
  DistributedFSCheck: Distributed checkup of the file system consistency.
  MRReliabilityTest: A program that tests the reliability of the MR framework by injecting faults/failures
  TestDFSIO: Distributed i/o benchmark.
  dfsthroughput: measure hdfs throughput
  filebench: Benchmark SequenceFile(Input|Output)Format (block,record compressed and uncompressed), Text(Input|Output)Format (compressed and uncompressed)
  loadgen: Generic map/reduce load generator
  mapredtest: A map/reduce test check.
  minicluster: Single process HDFS and MR cluster.
  mrbench: A map/reduce benchmark that can create many small jobs
  nnbench: A benchmark that stresses the namenode.
  testarrayfile: A test for flat files of binary key/value pairs.
  testbigmapoutput: A map/reduce program that works on a very big non-splittable file and does identity map/reduce
  testfilesystem: A test for FileSystem read/write.
  testipc: A test for ipc.
  testmapredsort: A map/reduce program that validates the map-reduce framework‘s sort.
  testrpc: A test for rpc.
  testsequencefile: A test for flat files of binary key value pairs.
  testsequencefileinputformat: A test for sequence file input format.
  testsetfile: A test for flat files of binary key/value pairs.
  testtextinputformat: A test for text input format.
  threadedmapbench: A map/reduce benchmark that compares the performance of maps with multiple spills over maps with 1 spill

这些程序从多个角度对Hadoop进行测试,TestDFSIO、mrbench和nnbench是三个广泛被使用的测试。

TestDFSIO

TestDFSIO用于测试HDFS的IO性能,使用一个MapReduce作业来并发地执行读写操作,每个map任务用于读或写每个文件,map的输出用于收集与处理文件相关的统计信息,reduce用于累积统计信息,并产生summary。TestDFSIO的用法如下:

TestDFSIO.0.0.6
Usage: TestDFSIO [genericOptions] -read | -write | -append | -clean [-nrFiles N] [-fileSize Size[B|KB|MB|GB|TB]] [-resFile resultFileName] [-bufferSize Bytes] [-rootDir]

以下的例子将往HDFS中写入10个1000MB的文件:

$ hadoop jar $HADOOP_HOME/hadoop-test-0.20.2-cdh3u3.jar TestDFSIO
  -write -nrFiles 10 -fileSize 1000

结果将会写到一个本地文件TestDFSIO_results.log:

----- TestDFSIO ----- : write
            Date & time: Mon Dec 10 11:11:15 CST 2012
        Number of files: 10
 Total MBytes processed: 10000.0
      Throughput mb/sec: 3.5158047729862436
 Average IO rate mb/sec: 3.5290374755859375
 IO rate std deviation: 0.22884063705950305
     Test exec time sec: 316.615

以下的例子将从HDFS中读取10个1000MB的文件:
$ hadoop jar $HADOOP_HOME/hadoop-test-0.20.2-cdh3u3.jar TestDFSIO
   -read -nrFiles 10 -fileSize 1000

结果将会写到一个本地文件TestDFSIO_results.log:
----- TestDFSIO ----- : read
            Date & time: Mon Dec 10 11:21:17 CST 2012
        Number of files: 10
 Total MBytes processed: 10000.0
      Throughput mb/sec: 255.8002711482874
 Average IO rate mb/sec: 257.1685791015625
 IO rate std deviation: 19.514058659935184
     Test exec time sec: 18.459

使用以下命令删除测试数据:
$ hadoop jar $HADOOP_HOME/hadoop-test-0.20.2-cdh3u3.jar TestDFSIO -clean

nnbench

nnbench用于测试NameNode的负载,它会生成很多与HDFS相关的请求,给NameNode施加较大的压力。这个测试能在HDFS上模拟创建、读取、重命名和删除文件等操作。nnbench的用法如下:

NameNode Benchmark 0.4
Usage: nnbench <options>
Options:
     -operation <Available operations are create_write open_read rename delete. This option is mandatory>
      * NOTE: The open_read, rename and delete operations assume that the files they operate on, are already available. The create_write operation must be run before running the other operations.
     -maps <number of maps. default is 1. This is not mandatory>
     -reduces <number of reduces. default is 1. This is not mandatory>
     -startTime <time to start, given in seconds from the epoch. Make sure this is far enough into the future, so all maps (operations) will start at the same time>. default is launch time + 2 mins. This is not mandatory
     -blockSize <Block size in bytes. default is 1. This is not mandatory>
     -bytesToWrite <Bytes to write. default is 0. This is not mandatory>
     -bytesPerChecksum <Bytes per checksum for the files. default is 1. This is not mandatory>
     -numberOfFiles <number of files to create. default is 1. This is not mandatory>
     -replicationFactorPerFile <Replication factor for the files. default is 1. This is not mandatory>
     -baseDir <base DFS path. default is /becnhmarks/NNBench. This is not mandatory>
     -readFileAfterOpen <true or false. if true, it reads the file and reports the average time to read. This is valid with the open_read operation. default is false. This is not mandatory>
     -help: Display the help statement

以下例子使用12个mapper和6个reducer来创建1000个文件:
$ hadoop jar $HADOOP_HOME/hadoop-test-0.20.2-cdh3u3.jar nnbench
    -operation create_write -maps 12 -reduces 6 -blockSize 1
    -bytesToWrite 0 -numberOfFiles 1000 -replicationFactorPerFile 3
    -readFileAfterOpen true -baseDir /benchmarks/NNBench-`hostname -s`

mrbench

mrbench会多次重复执行一个小作业,用于检查在机群上小作业的运行是否可重复以及运行是否高效。mrbench的用法如下:

MRBenchmark.0.0.2
Usage: mrbench [-baseDir <base DFS path for output/input, default is /benchmarks/MRBench>] [-jar <local path to job jar file containing Mapper and Reducer implementations, default is current jar file>] [-numRuns <number of times to run the job, default is 1>] [-maps <number of maps for each run, default is 2>] [-reduces <number of reduces for each run, default is 1>] [-inputLines <number of input lines to generate, default is 1>] [-inputType <type of input to generate, one of ascending (default), descending, random>] [-verbose]

以下例子会运行一个小作业50次:
$ hadoop jar $HADOOP_HOME/hadoop-test-0.20.2-cdh3u3.jar mrbench -numRuns 50

运行结果如下所示:
DataLines     Maps     Reduces     AvgTime (milliseconds)
1          2     1     14237

以上结果表示平均作业完成时间是14秒。

(2). Hadoop Examples

除了上文提到的测试,Hadoop还自带了一些例子,比如WordCount和TeraSort,这些例子在hadoop-examples-0.20.2-cdh3u3.jar中。执行以下命令会列出所有的示例程序:

$ hadoop jar $HADOOP_HOME/hadoop-examples-0.20.2-cdh3u3.jar
An example program must be given as the first argument.
Valid program names are:
  aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.
  aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.
  dbcount: An example job that count the pageview counts from a database.
  grep: A map/reduce program that counts the matches of a regex in the input.
  join: A job that effects a join over sorted, equally partitioned datasets
  multifilewc: A job that counts words from several files.
  pentomino: A map/reduce tile laying program to find solutions to pentomino problems.
  pi: A map/reduce program that estimates Pi using monte-carlo method.
  randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.
  randomwriter: A map/reduce program that writes 10GB of random data per node.
  secondarysort: An example defining a secondary sort to the reduce.
  sleep: A job that sleeps at each map and reduce task.
  sort: A map/reduce program that sorts the data written by the random writer.
  sudoku: A sudoku solver.
  teragen: Generate data for the terasort
  terasort: Run the terasort
  teravalidate: Checking results of terasort
  wordcount: A map/reduce program that counts the words in the input files.

WordCount在 Running Hadoop On CentOS (Single-Node Cluster) 一文中已有介绍,这里就不再赘述。

TeraSort

一个完整的TeraSort测试需要按以下三步执行:

用TeraGen生成随机数据对输入数据运行TeraSort用TeraValidate验证排好序的输出数据

并不需要在每次测试时都生成输入数据,生成一次数据之后,每次测试可以跳过第一步。

TeraGen的用法如下:

$ hadoop jar hadoop-*examples*.jar teragen <number of 100-byte rows> <output dir>

以下命令运行TeraGen生成1GB的输入数据,并输出到目录/examples/terasort-input:

$ hadoop jar $HADOOP_HOME/hadoop-examples-0.20.2-cdh3u3.jar teragen
    10000000 /examples/terasort-input

TeraGen产生的数据每行的格式如下:

<10 bytes key><10 bytes rowid><78 bytes filler>rn

其中:

key是一些随机字符,每个字符的ASCII码取值范围为[32, 126]rowid是一个整数,右对齐filler由7组字符组成,每组有10个字符(最后一组8个),字符从’A’到’Z’依次取值

以下命令运行TeraSort对数据进行排序,并将结果输出到目录/examples/terasort-output:

$ hadoop jar $HADOOP_HOME/hadoop-examples-0.20.2-cdh3u3.jar terasort
   /examples/terasort-input /examples/terasort-output

以下命令运行TeraValidate来验证TeraSort输出的数据是否有序,如果检测到问题,将乱序的key输出到目录/examples/terasort-validate

$ hadoop jar $HADOOP_HOME/hadoop-examples-0.20.2-cdh3u3.jar teravalidate
   /examples/terasort-output /examples/terasort-validate

(3). Hadoop Gridmix2

Gridmix是Hadoop自带的基准测试程序,是对其它几个基准测试程序的进一步封装,包括产生数据、提交作业、统计完成时间等功能模块。Gridmix自带了各种类型的作业,分别为streamSort、javaSort、combiner、monsterQuery、webdataScan和webdataSort。

$ cd  $HADOOP_HOME/src/benchmarks/gridmix2
$ ant
$ cp build/gridmix.jar .

修改环境变量

修改gridmix-env-2文件:

export HADOOP_INSTALL_HOME=/home/jeoygin
export HADOOP_VERSION=hadoop-0.20.2-cdh3u3
export HADOOP_HOME=${HADOOP_INSTALL_HOME}/${HADOOP_VERSION}
export HADOOP_CONF_DIR=${HADOOP_HOME}/conf
export USE_REAL_DATASET=

export APP_JAR=${HADOOP_HOME}/hadoop-test-0.20.2-cdh3u3.jar
export EXAMPLE_JAR=${HADOOP_HOME}/hadoop-examples-0.20.2-cdh3u3.jar
export STREAMING_JAR=${HADOOP_HOME}/contrib/streaming/hadoop-streaming-0.20.2-cdh3u3.jar

如果USE_REAL_DATASET的值为TRUE的话,将使用500GB压缩数据(等价于2TB非压缩数据),如果留空将使用500MB压缩数据(等价于2GB非压缩数据)。

修改配置信息

配置信息在gridmix_config.xml文件中。gridmix中,每种作业有大中小三种类型:小作业只有3个输入文件(即3个map);中作业的输入文件是与正则表达式{part-0000,part-0001,part-000*2}匹配的文件;大作业会处理处有数据。

产生数据

$ chmod +x generateGridmix2data.sh
$ ./generateGridmix2data.sh

generateGridmix2data.sh脚本会运行一个作业,在HDFS的目录/gridmix/data中产生输入数据。

运行

$ chmod +x rungridmix_2
$ ./rungridmix_2运行后,会创建_start.out文件来记录开始时间,结束后,创建_end.out文件来记录完成时间。

(4). 查看任务统计信息

Hadoop提供非常方便的方式来获取一个任务的统计信息,使用以下命令即可作到:

$ hadoop job -history all <job output directory>

这个命令会分析任务的两个历史文件(这两个文件存储在<job output directory>/_logs/history目录中)并计算任务的统计信息。

2. HiBench

HiBench是Intel开放的一个Hadoop Benchmark Suit,包含9个典型的Hadoop负载(Micro benchmarks、HDFS benchmarks、web search benchmarks、machine learning benchmarks和data analytics benchmarks),主页是: https://github.com/intel-hadoop/hibench 。

HiBench为大多数负载提供是否启用压缩的选项,默认的compression codec是zlib。

Micro Benchmarks:

Sort (sort):使用Hadoop RandomTextWriter生成数据,并对数据进行排序WordCount (wordcount):统计输入数据中每个单词的出现次数,输入数据使用Hadoop RandomTextWriter生成TeraSort (terasort):这是由微软的数据库大牛Jim Gray(2007年失踪)创建的标准benchmark,输入数据由Hadoop TeraGen产生

HDFS Benchmarks:

增强的DFSIO (dfsioe):通过产生大量同时执行读写请求的任务来测试Hadoop机群的HDFS吞吐量

Web Search Benchmarks:

Nutch indexing (nutchindexing):大规模搜索引擎索引是MapReduce的一个重要应用,这个负载测试Nutch(Apache的一个开源搜索引擎)的索引子系统,使用自动生成的Web数据,Web数据中的链接和单词符合Zipfian分布PageRank (pagerank):这个负载包含一种在Hadoop上的PageRank算法实现,使用自动生成的Web数据,Web数据中的链接符合Zipfian分布

Machine Learning Benchmarks:

Mahout Bayesian classification (bayes):大规模机器学习也是MapReduce的一个重要应用,这个负载测试Mahout 0.7(Apache的一个开源机器学习库)中的Naive Bayesian训练器,输入数据是自动生成的文档,文档中的单词符合Zipfian分布Mahout K-means clustering (kmeans):这个负载测试Mahout 0.7中的K-means聚类算法,输入数据集由基于均匀分布和高斯分布的GenKMeansDataset产生

Data Analytics Benchmarks:

Hive Query Benchmarks (hivebench):这个负载的开发基于SIGMOD 09的一篇论文“A Comparison of Approaches to Large-Scale Data Analysis”和HIVE-396,包含执行典型OLAP查询的Hive查询(Aggregation and Join),使用自动生成的Web数据,Web数据中的链接符合Zipfian分布

下文将${HIBENCH_HOME}定义为HiBench的解压缩目录。

(1). 安装与配置

建立环境:

HiBench-2.2:从https://github.com/intel-hadoop/HiBench/zipball/HiBench-2.2下载Hadoop:在运行任何负载之前,请确保Hadoop环境能正常运行,所有负载在Cloudera Distribution of Hadoop 3 update 4 (cdh3u4)和Hadoop 1.0.3上测试通过Hive:如果要测试hivebench,请确保已正确建立了Hive环境

配置所有负载:

需要在${HIBENCH_HOME}/bin/hibench-config.sh文件中设置一些全局的环境变量。

$ unzip HiBench-2.2.zip
$ cd HiBench-2.2
$ vim bin/hibench-config.sh

HADOOP_HOME      <The Hadoop installation location>
HADOOP_CONF_DIR  <The hadoop configuration DIR, default is $HADOOP_HOME/conf>
COMPRESS_GLOBAL  <Whether to enable the in/out compression for all workloads, 0 is disable, 1 is enable>
COMPRESS_CODEC_GLOBAL  <The default codec used for in/out data compression>

配置单个负载:

在每个负载目录下,可以修改conf/configure.sh这个文件,设置负载运行的参数。

同步每个节点的时间

(2). 运行

同时运行几个负载:

修改${HIBENCH_HOME}/conf/benchmarks.lst文件,该文件定义了将要运行的负载,每行指定一个负载,在任意一行前可以使用#跳过该行运行${HIBENCH_HOME}/bin/run-all.sh脚本

单独运行每个负载:

可以单独运行每个负载,通常,在每个负载目录下有三个不同的文件:

conf/configure.sh   包含所有参数的配置文件,可以设置数据大小及测试选项等
bin/prepare*.sh   生成或拷贝作业输入数据到HDFS
bin/run*.sh       运行benchmark

配置benchmark:如果需要,可以修改configure.sh文件来设置自己想要的参数准备数据:运行bin/prepare.sh脚本为benchmark准备输入数据运行benchmark:运行bin/run*.sh脚本来运行对应的benchmark

(3). 小结

HiBench覆盖了一些广被使用的Hadoop Benchmark,如果看过该项目的源码,会发现该项目很精悍,代码不多,通过一些脚本使每个benchmark的配置、准备和运行变得规范化,用起来十分方便。

原文地址:https://www.cnblogs.com/0xcafedaddy/p/8477818.html

时间: 2024-11-08 23:40:57

几个有关Hadoop自带的性能测试工具的应用的相关文章

运行Hadoop自带的wordcount单词统计程序

0.前言 前面一篇<Hadoop初体验:快速搭建Hadoop伪分布式环境>搭建了一个Hadoop的环境,现在就使用Hadoop自带的wordcount程序来做单词统计的案例. 1.使用示例程序实现单词统计 (1)wordcount程序 wordcount程序在hadoop的share目录下,如下: [[email protected] mapreduce]# pwd /usr/local/hadoop/share/hadoop/mapreduce [[email protected] mapr

利用hadoop自带程序运行wordcount

1.启动hadoop守护进程 bin/hadoop start-all.sh 2.在hadoop的bin目录下建立一个input文件夹 mkdire input 3.进入input目录之后,在input目录下新建两个文本文件,并想其写入内容 echo "hello excuse me fuck thank you">test1.txt echo "hello how do you do thank you">test2.txt 4.进入hadoop的bi

hadoop自带的writable类型

Hadoop 中,并没有使用Java自带的基本类型类(Integer.Float等),而是使用自己开发的类.Hadoop 自带有很多序列化类型,大致分为以下两种: 实现了WritableComparable接口的类 基础:BooleanWritable | ByteWritable 数字:IntWritable | VIntWritable | FloatWritable | LongWritable | VLongWritable | DoubleWritable 高级:NullWritabl

Apache自带性能测试工具ab的使用

Apache服务器套件自带ab,只要安装Apache即可,无需另行安装ab.ab位于%ApacheHome%/bin目录下(“%ApacheHome%”为Aapche安装路径),你也可以把ab.exe文件copy出来,独立使用.  假设我们要测试一个PHP论坛系统,其中一个性能测试用例是:“同时处理50个并发请求并运行 1000 次index.php 首页”,我们可以在cmd shell中输入 ab -n 1000 -c 50 http://172.16.11.180:88/bbs/index.

apache性能测试工具ab使用详解

网站性能压力测试是服务器网站性能调优过程中必不可缺少的一环.只有让服务器处在高压情况下,才能真正体现出软件.硬件等各种设置不当所暴露出的问题. 性能测试工具目前最常见的有以下几种:ab.http_load.webbench.siege.今天我们专门来介绍ab. ab是apache自带的压力测试工具.ab非常实用,它不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器进行压力测试.比如nginx.tomcat.IIS等. 一.ab的原理 ab是apachebench命令的缩

几个性能测试工具

我个人认为一个优秀的软件工程师必须掌握一定的测试技能.可能有的开发工程师认为测试是测试工程师的事情,不是开发工程师的事情.这种开发工程师是缺一条腿的,离开了测试工程师,你如何证明你的程序没有问题. 下面是我这两天搜集的性能测试工具,如果大家知道别的工具,可以在回复中分享出来. Web Bench Web Bench is very simple tool for benchmarking WWW or proxy servers. Uses fork() for simulating multi

性能测试知多少---性能测试工具原理与架构

在性能测试的学习过程中,坚持思想与工具(分开)并行,当前面世面上的性能测试书籍大多把理论与loadrunner融为一体讲解,这样做是正确的,因为有一些性能名词概念也源于工具.但是,性能测试不是loadrunner,所有的作者也是这么认为的.但他们在讲性能测试的时候讲的就是loadrunner有,只是讲的多少不同罢啦. 你是否觉得我对loadrunner有仇?我之所以将其分开来学,只是希望自己在学习性能测试的时候不要被loadrunner局限了而已.只是觉得在做性能测试时不要带loadrunner

Android性能测试 一些适用于Android Studio的代码审查和性能测试工具

导言: Android应用在CPU占用,内存消耗方面的性能指标是影响产品质量的重要因素,由于QQ管家,360手机助手等应用都提供直观的内存消耗,流量监控功能,致使用户比以往更加关注软件的性能,并以此进行软件选用的决策. 目前,已经有很多可以监控android app 性能的工具可以供开发人员使用,如:基于Eclipse插件体系的MAT,其通过生成.hprof文件对内存泄露情况进行排查:内存检测工具APT:提供CPU利用率实时曲线图,方便对比测试内存泄露问题[图0-1] 图 0-1  通过APT实

烂泥:apache性能测试工具ab的应用

本文由秀依林枫提供友情赞助,首发于烂泥行天下. 网站性能压力测试是服务器网站性能调优过程中必不可缺少的一环.只有让服务器处在高压情况下,才能真正体现出软件.硬件等各种设置不当所暴露出的问题. 性能测试工具目前最常见的有以下几种:ab.http_load.webbench.siege.今天我们专门来介绍ab. ab是apache自带的压力测试工具.ab非常实用,它不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器进行压力测试.比如nginx.tomcat.IIS等. 下面