tensorflow 基础学习九:mnist卷积神经网络

mnist_inference.py:

# -*- coding:utf-8 -*-
import tensorflow as tf

# 配置神经网络参数
INPUT_NODE=784
OUTPUT_NODE=10

IMAGE_SIZE=28
NUM_CHANNELS=1
NUM_LABELS=10

# 第一层卷积层的尺寸和深度
CONV1_DEEP=32
CONV1_SIZE=5
# 第二层卷积层的尺寸和深度
CONV2_DEEP=64
CONV2_SIZE=5
# 全连接层的节点个数
FC_SIZE=512

def inference(input_tensor,train,regularizer):

    # 输入:28×28×1,输出:28×28×32
    with tf.variable_scope(‘layer1-conv1‘):
        conv1_weights=tf.get_variable(‘weights‘,[CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],
                                     initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases=tf.get_variable(‘biases‘,[CONV1_DEEP],initializer=tf.constant_initializer(0.0))
        # 使用尺寸为5,深度为32的过滤器,步长为1,使用全0填充
        conv1=tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding=‘SAME‘)
        relu1=tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))

    # 输入:28×28×32,输出:14×14×32
    with tf.name_scope(‘layer2-pool1‘):
        pool1=tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘)

    # 输入:14×14×32,输出:14×14×64
    with tf.variable_scope(‘layer3-conv2‘):
        conv2_weights=tf.get_variable(‘weights‘,[CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],
                                     initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases=tf.get_variable(‘biases‘,[CONV2_DEEP],initializer=tf.constant_initializer(0.0))

         # 使用尺寸为5,深度为64的过滤器,步长为1,使用全0填充
        conv2=tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding=‘SAME‘)
        relu2=tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))

    # 输入:14×14×64,输出:7×7×64
    with tf.name_scope(‘layer4-pool2‘):
        pool2=tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘)
        # 将7×7×64的矩阵转换成一个向量,因为每一层神经网络的输入输出都为一个batch矩阵,所以这里得到的维度
        # 也包含了一个batch中数据的个数(batch×7×7×64 --> batch×vector)
        pool_shape=pool2.get_shape().as_list()
        # pool_shape[0]为一个batch中数据的个数
        nodes=pool_shape[1]*pool_shape[2]*pool_shape[3]
        # 通过tf.reshape函数将第四层的输出变成一个batch的向量
        reshaped=tf.reshape(pool2,[pool_shape[0],nodes])

    with tf.variable_scope(‘layer5-fc1‘):
        fc1_weights=tf.get_variable(‘weights‘,[nodes,FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))
        # 只有全连接层的权重需要加入正则化
        if regularizer != None:
            tf.add_to_collection(‘losses‘,regularizer(fc1_weights))
        fc1_biases=tf.get_variable(‘biases‘,[FC_SIZE],initializer=tf.constant_initializer(0.1))
        fc1=tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
        if train:
            fc1=tf.nn.dropout(fc1,0.5)

    with tf.variable_scope(‘layer6-fc2‘):
        fc2_weights=tf.get_variable(‘weights‘,[FC_SIZE,NUM_LABELS],initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None:
            tf.add_to_collection(‘losses‘,regularizer(fc2_weights))
        fc2_biases=tf.get_variable(‘biases‘,[NUM_LABELS],initializer=tf.constant_initializer(0.1))
        logit=tf.matmul(fc1,fc2_weights)+fc2_biases

    return logit

mnist_train.py:

# -*- coding:utf-8 -*-
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import mnist_inference

# 配置神经网络的参数
BATCH_SIZE=100
LEARNING_RATE_BASE=0.01
LEARNING_RATE_DECAY=0.99
REGULARAZTION_RATE=0.0001
TRAINING_STEPS=6000
MOVING_AVERAGE_DECAY=0.99

# 模型保存的路径和文件名
MODEL_SAVE_PATH=‘log/‘
MODEL_NAME=‘model.ckpt‘

def train(mnist):
    # 定义输入输出placeholder
    x=tf.placeholder(tf.float32,[BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS],name=‘x-input‘)
    y_=tf.placeholder(tf.float32,[None,mnist_inference.OUTPUT_NODE],name=‘y-input‘)

    regularizer=tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    # 直接使用mnist_inference.py 中定义的前向传播过程。
    y=mnist_inference.inference(x,False,regularizer)

    global_step=tf.Variable(0,trainable=False)

    # 定义损失函数、学习率、滑动平均操作以及训练过程。
    variable_averages=tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
    variable_averages_op=variable_averages.apply(tf.trainable_variables())

    cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))
    cross_entropy_mean=tf.reduce_mean(cross_entropy)
    loss=cross_entropy_mean+tf.add_n(tf.get_collection(‘losses‘))

    learning_rate=tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,
                mnist.train.num_examples/BATCH_SIZE,LEARNING_RATE_DECAY,staircase=True)
    train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)

    with tf.control_dependencies([train_step,variable_averages_op]):
        train_op=tf.no_op(name=‘train‘)

    # 初始化Tensorflow持久化类
    saver=tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        # 在训练时不在测试模型的在验证数据上的表现,验证和测试的过程将会用一个独立的程序来完成
        for i in range(TRAINING_STEPS):
            xs,ys=mnist.train.next_batch(BATCH_SIZE)
            reshaped_xs=np.reshape(xs,(BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS))
            _,loss_value,step=sess.run([train_op,loss,global_step],feed_dict={x:reshaped_xs,y_:ys})

            # 每1000轮保存一次模型
            if i % 1000 == 0:
                print(‘After {} training step(s), loss on training batch is {}.‘.format(step,loss_value))
                # 这里给出了global_step参数,可以在每个被保存模型的文件名末尾加上训练的轮数
                saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),global_step=global_step)

def main(argv=None):
    mnist=input_data.read_data_sets(‘.‘,one_hot=True)
    train(mnist)

if __name__ == ‘__main__‘:
    tf.app.run()

原文地址:https://www.cnblogs.com/hypnus-ly/p/8322671.html

时间: 2024-11-06 09:45:00

tensorflow 基础学习九:mnist卷积神经网络的相关文章

深度学习笔记1(卷积神经网络)

深度学习笔记1(卷积神经网络) 在看完了UFLDL教程之后,决定趁热打铁,继续深度学习的学习,主要想讲点卷积神经网络,卷积神经网络是深度学习的模型之一,还有其它如AutoEncoding.Deep Belief Network.Restricted Boltzmann Machine和sparse coding等. 在UFLDL教程中提到了针对大型图像的处理,使用卷积和池化的概念.原因主要对于全连接网络,需要的参数就有很多.比如对于一副1000*1000的图像,hidden layer也为100

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-01-CNN基础知识点

第一天<CNN基础知识点>From:Convolutional Neural Networks (LeNet) 神经认知机. CNN的灵感来源在诸多论文中已经讲得很全面了,就是伟大的生物发现Receptive Field(感受野细胞).根据这个概念提出了神经认知机.它的主要作用就是Recept部分图像信息(或特征),然后通过分层递交相连,将各个局部特征组合成整个图像特征. 需要仔细阅读的论文包括: (1) 第一篇关于感受野功能的论文Receptive fields and functional

深度学习之 TensorFlow(四):卷积神经网络

基础概念: 卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量.卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直接将图片作为网络的输入,自动提取特征,并且对图形的变形等具有高度不变形.在语音分析和图像识别领域有重要用途. 卷积:卷积是泛函分析中的一种积分变换的数学方法,通过两个函数 f 和 g 生成第三个函数的一种数学算子,表征函数 f 与 g 经过翻转和平移的重叠部分的面积.设函数  是定义在  上的可测函

tensorflow学习之路-----卷积神经网络个人总结

卷积神经网络大总结(个人理解) 神经网络 1.概念:从功能他们模仿真实数据 2.结构:输入层.隐藏层.输出层.其中隐藏层要有的参数:权重.偏置.激励函数.过拟合 3.功能:能通过模仿,从而学到事件 其中过拟合:电脑太过于自信,想把所有的数据都模拟下来.但是这并不符合我们的实际的需求 激励函数:激活某一些参数 卷积神经网络: 1.一般的结构:输入数据.卷积层.池化层.卷积层.池化层.全连接层.全连接层.误差分析.参数优化.显示精确度 2.每一个层的要求: 输入数据:类型:[-1(表示能接受任意张图

学习笔记TF027:卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN),可以解决图像识别.时间序列信息问题.深度学习之前,借助SIFT.HoG等算法提取特征,集合SVM等机器学习算法识别图像. SIFT,缩放.平移.旋转.视角转变.亮度调整畸变的一定程度内,具有不变性.有局限性,ImageNet ILSVRC比赛最好结果错误率在26%以上,常年难以突破. 卷积神经网络提取特征效果更好,分类训练时自动提取最有效特征.卷积神经网络CNN,降低图像数据预处理要求,避免复杂特征工程.CNN使用

CV学习资料《卷积神经网络与视觉计算》+《深度学习实践计算机视觉》+《视觉SLAM十四讲从理论到实践》电子资料代码分析

视觉和图形学真是一家,基础都一样! 如果学习图像识别,计算机视觉,推荐电子书<视觉SLAM十四讲:从理论到实践>,系统介绍了视觉SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动.非线性优化,又包括计算机视觉的算法实现,例如多视图几何.回环检测等. 一个周读完了,代码很清晰!Particle Filtering,KF,EKF, Batch Optimization, Lie Group,ICP,LK光流... 尤其惊喜的是文末作者看好的IMU-SL

TensorFlow框架(4)之CNN卷积神经网络详解

1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对于上图中隐藏层的第j个神经元的输出可以表示为: 其中,f是激活函数,bj为每个神经元的偏置. 1.2 卷积神经网络 1.2.1 网络结构 卷积神经网络与多层前馈神经网络的结构不一样,其每层神经元与下一层神经元不是全互连,而是部分连接,即每层神经层中只有部分的神经元与下一层神经元有连接,但是神经元之间

论文学习-系统评估卷积神经网络各项超参数设计的影响-Systematic evaluation of CNN advances on the ImageNet

写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:https://arxiv.org/abs/1606.02228 github地址:https://github.com/ducha-aiki/caffenet-benchmark 在这篇文章中,作者在ImageNet上做了大量实验,对比卷积神经网络架构中各项超参数选择的影响,对如何优化网络性能很有启发意义,对比实验包括激活函数(sigmoid.ReLU.ELU.ma

Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_训练模型

原理就不多讲了,直接上代码,有详细注释. #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_