●BZOJ 3529 [Sdoi2014]数表

题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3529

题解:

莫比乌斯反演。

按题目的意思,令$f(i)$表示i的所有约数的和,就是要求:

$ANS=\sum f(gcd(i,j)),满足1 \leq i \leq n,1 \leq j \leq m,且 f(gcd(i,j))\leq a$



首先 $f(i)$ 应该还是比较好推的,利用其为积性函数的特点,可以在线性筛时完成计算。

令$g[k]$表示$gcd(i,j)=k$的$(i,j)$的对数

$G[k]$表示$gcd(i,j)=\lambda k$的$(i,j)$的对数,其值$G[k]=\lfloor \frac{n}{k} \rfloor \lfloor \frac{m}{k} \rfloor$

那么显然,$G[k]$为$g[k]$的倍数关系和函数,

即满足$G[k]=\sum_{k|d} g[d]$

则由莫比乌斯反演得:

$g[k]=\sum_{k|d}\mu(\frac{d}{k})G[d]$

$\quad\quad=\sum_{k|d}\mu(\frac{d}{k})\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$

那么现在,直接从gcd的值的角度出发,ANS可以写成如下形式:

$ANS=\sum_{i=1}^{min(n,m)}f(i)g(i)$

$\quad\quad=\sum_{i=1}^{min(n,m)}f(i)\sum_{i|d}\mu(\frac{d}{i})\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$

然后再化一下:

$\quad\quad=\sum_{d=1}^{min(n,m)}\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor\sum_{i|d}f(i)\mu(\frac{d}{i})$

令 $w(d)=\sum_{i|d}f(i)\mu(\frac{d}{i})$

那么$ANS=\sum_{d=1}^{min(n,m)}\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor w(d)$

原文地址:https://www.cnblogs.com/zj75211/p/8270517.html

时间: 2024-10-06 01:29:40

●BZOJ 3529 [Sdoi2014]数表的相关文章

BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status][Discuss] Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. Input 输入包含多组数据.    输入的第一行一个整数Q表示测试点内的数据

BZOJ 3529: [Sdoi2014]数表

Description 有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. HINT 1 < =N.m < =10^5  , 1 < =Q < =2×10^4 Solution 先假设a的限制不存在 正面把答案强行写出来是这样的 其中F(i)为i的约数和,可以线性筛处理 然后慢慢化简其中的各个部分 令g(i)为1<=x<=n,1<

BZOJ 3529([Sdoi2014]数表-莫比乌斯反演)

有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和模2^31的值模2^31的值. 1<=n.m<=10 5 ,Q<=2×10 4  组询问 记k的约数和f(k) 求∑ n i=1 ∑ m j=1 gcd(i,j)[f(gcd(i,j))≤a] #include<bits/stdc++.h> using namespace std; #defin

bzoj 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po姐的题解(Orzzz)才搞懂这道题,搞清楚了莫比乌斯反演的两种经典的卷积形式的不同之处 令$\sigma(i)$表示i的约数个数和 如果去掉A这个限制,则题目是让我们求$\sum_{i=1}^{n}\sum_{j=1}^{m}\sigma(gcd(i,j))$ 考虑如何正确转化式子,让我们能够把不大

【BZOJ】3529: [Sdoi2014]数表

题意:求 $$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|(i, j)} d 且 (\sum_{d|(i, j)} d)<=a$$ n, m<=1e5,q次询问,q<=2*1e4 #include <bits/stdc++.h> using namespace std; const int N=1e5+10, MN=1e5, YU=(1u<<31)-1; int c[N], mx; void upd(int x, int s) {

bzoj [SDOI2014]数表 莫比乌斯反演 BIT

bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[gcd(i,j)]<=a] \] \[ f[]可以O(n)预处理出来 \] \[ \sum\limits_{k=1}^{n}f[k]*\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{m}[gcd(i,j)==k] \] \[ \sum\limits_{k=1}^{n}

【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

[BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. Input 输入包含多组数据.    输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据. Output 对每组数据,输出一行一个整数,表示答案模2^31的值. Sample I

P3312 [SDOI2014]数表

P3312 [SDOI2014]数表 求\(\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))[\sigma(gcd(i,j)<=a)]\) \(f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d]\) \(F(d)=\sum_{i=1}^n\sum_{j=1}^m [|dgcd(i,j)]=\sum_{d|k}f(k)\) \(f(d)=\sum_{d|k}\mu(\dfrac{k}{d})F(k)=\sum_{d|k}\mu(\le

数表(bzoj 3529)

Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. Input 输入包含多组数据.    输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据. Output 对每组数据,输出一行一个整数,表示答案模2^31的值. Sample Input 2 4 4 3 10 10 5 Sa