平衡二叉树(AVL)与红黑树

一、AVL树性质

1.本身首先是一棵二叉搜索树。

2.带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。

也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。

AVL树的查找、插入和删除在平均和最坏情况下都是O(logn)。
如果在AVL树中插入或删除节点后,使得高度之差大于1。此时,AVL树的平衡状态就被破坏,它就不再是一棵二叉树;为了让它重新维持在一个平衡状态,就需要对其进行旋转处理。

二、红黑树性质

红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:

1. 节点是红色或黑色。

2. 根节点是黑色。

3 每个叶节点(NIL节点,空节点)是黑色的。

4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

红黑树的应用比较广泛,主要是用它来存储有序的数据,它的时间复杂度是O(logn),效率非常之高。
例如,Java集合中的TreeSet和TreeMap,C++ STL中的set、map,以及Linux虚拟内存的管理,都是通过红黑树去实现的。

三、两者的区别

1、红黑树并不追求“完全平衡”——它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能。红黑树能够以O(log2 n) 的时间复杂度进行搜索、插入、删除操作。此外,由于它的设计,任何不平衡都会在三次旋转之内解决。当然,还有一些更好的,但实现起来更复杂的数据结构 能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较“便宜”的解决方案。红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高。当然,红黑树并不适应所有应用树的领域。如果数据基本上是静态的,那么让他们待在他们能够插入,并且不影响平衡的地方会具有更好的性能。如果数据完全是静态的,例如,做一个哈希表,性能可能会更好一些。在实际的系统中,例如,需要使用动态规则的防火墙系统,使用红黑树而不是散列表被实践证明具有更好的伸缩性,典型的用途是实现关联数组。

2、AVL树是最先发明的自平衡二叉查 找树。在AVL树中任何节点的两个儿子子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。

两者的差异均由两者本身的特性导致,正所谓“成也萧何,败也萧何”。

参考内容:

https://baike.baidu.com/item/AVL%E6%A0%91/10986648?fr=aladdin

https://baike.baidu.com/item/%E7%BA%A2%E9%BB%91%E6%A0%91/2413209?fr=aladdin

http://blog.csdn.net/klarclm/article/details/7780319

原文地址:http://blog.51cto.com/developerycj/2058929

时间: 2024-11-09 03:46:20

平衡二叉树(AVL)与红黑树的相关文章

树:BST、AVL、红黑树、B树、B+树

我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到过. (2) 查找的时间复杂度大体维持在O(log(N))数量级上.可能有些结构在最差的情况下效率将

浅谈AVL树,红黑树,B树,B+树原理及应用

背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上说mysql的存储引擎InnoDB采用的索引类型是B+Tree,那么,大家有没有产生这样一个疑问,对于数据索引,为什么要使用B+Tree这种数据结构,和其它树相比,它能体现的优点在哪里? 看完这篇文章你就会了解到这些数据结构的原理以及它们各自的应用场景. 二叉查找树 简介 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为

二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree)的比较

http://www.iteye.com/topic/614070 此少侠总结的特棒,直接收藏了. 我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到

从二叉排序树到平衡二叉树再到红黑树系列3

这篇博客主要讲解B树及其插入删除操作,并给出操作的流程图以达到清晰易懂的目的,尽管标题是从二叉排序树到平衡二叉树再到红黑树系列3,没有B树二字,但他们都是动态查找树,所以我将他们归为一个系列. B树是为磁盘或其他直接存取的辅助存储设备而设计的一种平衡搜索树.它以一种很自然的方式推广了二叉搜索树,B树与红黑树的不同之处在于B树结点的孩子不限于最多为2,而是可以有数个到数千个不定.因为结点的分支更多,因而相比红黑树,高度更小. B树的定义有如下两种,但殊途同归. 定义形式一(以度 t 定义): 一棵

平衡二叉搜索树(AVL树,红黑树)数据结构和区别

平衡二叉搜索树(Balanced Binary Search Tree) 经典常见的自平衡的二叉搜索树(Self-balancing Binary Search Tree)有 ① AVL树 :Windows NT 内核中广泛使用 ② 红黑树:C++ STL(比如 map.set )Java 的 TreeMap.TreeSet.HashMap.HashSet  Linux 的进程调度  Ngix 的 timer 管理 1 AVL树  vs  红黑树 ①AVL树 平衡标准比较严格:每个左右子树的高度

数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树 的搜索性能逼近二分查找:但它比连续内存空间的二分查找的优点是,改变BST树结构 插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销: 如:

从二叉排序树到平衡二叉树再到红黑树系列2

上篇博客主要讲述了二叉排序树的基本概念和插入删除操作,必须再次说明的是:在一棵高度为h的二叉排序树上,实现动态集合操作查询,插入和删除的运行时间均为O(h). 可见二叉树的基本操作效率取决于树的形态,当然树的高度越低越好,显然树分布越均匀,高度越低.那么,问题来了?对于给定的关键字序列,如何构造一棵形态匀称的二叉排序树.这种匀称的二叉排序树就称为平衡二叉树. 平衡二叉树定义:平衡二叉树或为空树,或其上任意一个节点,节点的左右子树高度差不超过1.     通常将二叉树上所有结点的左右子树的高度之差

数据结构之二叉树扩展AVL,B-,B+,红黑树

1.AVL 1.基本概念 AVL是平衡二叉查找树,它或者是一颗空树,或者是具有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值不超过1. 若将二叉树结点上的平衡因子BF(Balance Factor)定义为该结点的左子树的深度减去它的右子树的深度,则平衡二叉树上所有结点的平衡因子只能是-1,0,1. 2.性质 平衡二叉查找树,在添加或者删除的结点的过程中,如果失去平衡,则需要进行平衡调整.调整的过程中,要保持根大于左,小于右的特性. 3.应用场景 最早的平衡

AVL变种-红黑树

对红黑树的操作在最坏的情形下花费O(logN)时间,相对AVL树来说,性质比较多但是换取了插入和删除时少量的旋转操作. 因为书中说的不清楚,特查看wiki做本文笔记~~ 性质 节点是红色或者黑色 根为黑色的 所有叶子为黑色 每个红色节点必须有两个黑色的子节点 从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点 操作 红黑树的只读操作和普通二叉查找树的操作是一样,但是插入和删除要考虑相邻节点的情况,来重新平衡性质 插入 下面用叔父节点来指代父节点的兄弟节点,当插入新节点的时候,可能会有下

从二叉排序树到平衡二叉树再到红黑树系列1

最近想写一些关于红黑树的博客,既想写的全面,又直观,但是又不知道从哪里入手.斟酌再三,还是从最简单的二叉排序树开始写. 二叉排序树(Binary Sort Tree)又叫二叉查找树.它是一种特殊结构的二叉树.其或为空树,或具备下列性质: (1)若它的左子树不为空,则左子树上所有结点的值均小于它的根节点的值. (2)若它的右子树不为空,则左子树上所有结点的值均大于它的根节点的值. 显然,它的中序遍历就是一个递增的有序序列. 定理:在一棵高度为h的二叉搜索树上,动态集合上的操作serach,minm