附近的人位置距离计算方法

附近的人的位置用经纬度表示,然后通过两点的经纬度计算距离。根据网上的推荐,最终采用geohash。

geohash的实现java版:

  1 import java.util.BitSet;
  2 import java.util.HashMap;
  3 import java.util.Map;
  4
  5 import org.apache.commons.lang3.StringUtils;
  6
  7 public class Geohash {
  8
  9     private static int numbits = 6 * 5;
 10     final static char[] digits = { ‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘,
 11             ‘9‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘, ‘g‘, ‘h‘, ‘j‘, ‘k‘, ‘m‘, ‘n‘, ‘p‘,
 12             ‘q‘, ‘r‘, ‘s‘, ‘t‘, ‘u‘, ‘v‘, ‘w‘, ‘x‘, ‘y‘, ‘z‘ };
 13
 14     final static HashMap<Character, Integer> lookup = new HashMap<Character, Integer>();
 15     static {
 16         int i = 0;
 17         for (char c : digits)
 18             lookup.put(c, i++);
 19
 20     }
 21
 22     public Geohash() {
 23         setMap();
 24     }
 25
 26     public double[] decode(String geohash) {
 27         StringBuilder buffer = new StringBuilder();
 28         for (char c : geohash.toCharArray()) {
 29
 30             int i = lookup.get(c) + 32;
 31             buffer.append(Integer.toString(i, 2).substring(1));
 32         }
 33
 34         BitSet lonset = new BitSet();
 35         BitSet latset = new BitSet();
 36
 37         // even bits
 38         int j = 0;
 39         for (int i = 0; i < numbits * 2; i += 2) {
 40             boolean isSet = false;
 41             if (i < buffer.length())
 42                 isSet = buffer.charAt(i) == ‘1‘;
 43             lonset.set(j++, isSet);
 44         }
 45
 46         // odd bits
 47         j = 0;
 48         for (int i = 1; i < numbits * 2; i += 2) {
 49             boolean isSet = false;
 50             if (i < buffer.length())
 51                 isSet = buffer.charAt(i) == ‘1‘;
 52             latset.set(j++, isSet);
 53         }
 54
 55         double lon = decode(lonset, -180, 180);
 56         double lat = decode(latset, -90, 90);
 57
 58         return new double[] { lat, lon };
 59     }
 60
 61     private double decode(BitSet bs, double floor, double ceiling) {
 62         double mid = 0;
 63         for (int i = 0; i < bs.length(); i++) {
 64             mid = (floor + ceiling) / 2;
 65             if (bs.get(i))
 66                 floor = mid;
 67             else
 68                 ceiling = mid;
 69         }
 70         return mid;
 71     }
 72
 73     public String encode(String lat, String lon) {
 74
 75         return encode(Double.parseDouble(lat), Double.parseDouble(lon));
 76
 77     }
 78
 79     public String encode(double lat, double lon) {
 80         BitSet latbits = getBits(lat, -90, 90);
 81         BitSet lonbits = getBits(lon, -180, 180);
 82         StringBuilder buffer = new StringBuilder();
 83         for (int i = 0; i < numbits; i++) {
 84             buffer.append((lonbits.get(i)) ? ‘1‘ : ‘0‘);
 85             buffer.append((latbits.get(i)) ? ‘1‘ : ‘0‘);
 86         }
 87         return base32(Long.parseLong(buffer.toString(), 2));
 88     }
 89
 90     private BitSet getBits(double lat, double floor, double ceiling) {
 91         BitSet buffer = new BitSet(numbits);
 92         for (int i = 0; i < numbits; i++) {
 93             double mid = (floor + ceiling) / 2;
 94             if (lat >= mid) {
 95                 buffer.set(i);
 96                 floor = mid;
 97             } else {
 98                 ceiling = mid;
 99             }
100         }
101         return buffer;
102     }
103
104     public static String base32(long i) {
105         char[] buf = new char[65];
106         int charPos = 64;
107         boolean negative = (i < 0);
108         if (!negative)
109             i = -i;
110         while (i <= -32) {
111             buf[charPos--] = digits[(int) (-(i % 32))];
112             i /= 32;
113         }
114         buf[charPos] = digits[(int) (-i)];
115
116         if (negative)
117             buf[--charPos] = ‘-‘;
118         return new String(buf, charPos, (65 - charPos));
119     }
120
121     /*********************** 获取九个的矩形编码 ****************************************/
122     public static String BASE32 = "0123456789bcdefghjkmnpqrstuvwxyz";
123     public static Map<String, String> BORDERS = new HashMap<String, String>();
124     public static Map<String, String> NEIGHBORS = new HashMap<String, String>();
125
126     public static void setMap() {
127         NEIGHBORS.put("right:even", "bc01fg45238967deuvhjyznpkmstqrwx");
128         NEIGHBORS.put("left:even", "238967debc01fg45kmstqrwxuvhjyznp");
129         NEIGHBORS.put("top:even", "p0r21436x8zb9dcf5h7kjnmqesgutwvy");
130         NEIGHBORS.put("bottom:even", "14365h7k9dcfesgujnmqp0r2twvyx8zb");
131
132         NEIGHBORS.put("right:odd", "p0r21436x8zb9dcf5h7kjnmqesgutwvy");
133         NEIGHBORS.put("left:odd", "14365h7k9dcfesgujnmqp0r2twvyx8zb");
134         NEIGHBORS.put("top:odd", "bc01fg45238967deuvhjyznpkmstqrwx");
135         NEIGHBORS.put("bottom:odd", "238967debc01fg45kmstqrwxuvhjyznp");
136
137         BORDERS.put("right:even", "bcfguvyz");
138         BORDERS.put("left:even", "0145hjnp");
139         BORDERS.put("top:even", "prxz");
140         BORDERS.put("bottom:even", "028b");
141
142         BORDERS.put("right:odd", "prxz");
143         BORDERS.put("left:odd", "028b");
144         BORDERS.put("top:odd", "bcfguvyz");
145         BORDERS.put("bottom:odd", "0145hjnp");
146
147     }
148
149     /**
150      * 获取九个点的矩形编码
151      *
152      * @param geohash
153      * @return
154      */
155     public String[] getGeoHashExpand(String geohash) {
156         try {
157             String geohashTop = calculateAdjacent(geohash, "top");
158             String geohashBottom = calculateAdjacent(geohash, "bottom");
159             String geohashRight = calculateAdjacent(geohash, "right");
160             String geohashLeft = calculateAdjacent(geohash, "left");
161             String geohashTopLeft = calculateAdjacent(geohashLeft, "top");
162             String geohashTopRight = calculateAdjacent(geohashRight, "top");
163             String geohashBottomRight = calculateAdjacent(geohashRight,
164                     "bottom");
165             String geohashBottomLeft = calculateAdjacent(geohashLeft, "bottom");
166             String[] expand = { geohash, geohashTop, geohashBottom,
167                     geohashRight, geohashLeft, geohashTopLeft, geohashTopRight,
168                     geohashBottomRight, geohashBottomLeft };
169             return expand;
170         } catch (Exception e) {
171             return null;
172         }
173     }
174
175     /**
176      * 分别计算每个点的矩形编码
177      *
178      * @param srcHash
179      * @param dir
180      * @return
181      */
182     public static String calculateAdjacent(String srcHash, String dir) {
183         srcHash = srcHash.toLowerCase();
184         char lastChr = srcHash.charAt(srcHash.length() - 1);
185         int a = srcHash.length() % 2;
186         String type = (a > 0) ? "odd" : "even";
187         String base = srcHash.substring(0, srcHash.length() - 1);
188         if (BORDERS.get(dir + ":" + type).indexOf(lastChr) != -1) {
189             base = calculateAdjacent(base, dir);
190         }
191         base = base
192                 + BASE32.toCharArray()[(NEIGHBORS.get(dir + ":" + type)
193                         .indexOf(lastChr))];
194         return base;
195     }
196
197     // @Deprecated
198     // public static void expandLngLat(String geohash, int len){
199     // boolean is_even = true;
200     // double[] lat = new double[3];
201     // double[] lon = new double[3];
202     // lat[0] = -90.0;
203     // lat[1] = 90.0;
204     // lon[0] = -180.0;
205     // lon[1] = 180.0;
206     // double lat_err = 90.0;
207     // double lon_err = 180.0;
208     // char[] geohashChar = geohash.toCharArray();
209     // // String[] BITS = {"16", "8", "4", "2", "1"};
210     // int[] BITS = {16, 8, 4, 2, 1};
211     // for (int i = 0; i < geohashChar.length; i++) {
212     // char c = geohashChar[i];
213     // int cd = BASE32.indexOf(c);
214     // for (int j = 0; j < 5; j++) {
215     // int mask = BITS[j];
216     // if (is_even) {
217     // lon_err /= 2;
218     // refine_interval(lon, cd, mask);
219     // } else {
220     // lat_err /= 2;
221     // refine_interval(lat, cd, mask);
222     // }
223     // is_even = !is_even;
224     // }
225     // }
226     // lat[2] = (lat[0] + lat[1])/2;
227     // //1:[38.8970947265625, 38.902587890625, 38.89984130859375]
228     // //1: 38.8970947265625, 38.902587890625, 38.89984130859375
229     // //2:[38.902587890625, 38.9080810546875, 38.90533447265625]
230     // //2: 38.902587890625, 38.9080810546875, 38.90533447265625
231     // lon[2] = (lon[0] + lon[1])/2;
232     // //1:[-77.047119140625, -77.0361328125, -77.0416259765625]
233     // //1: -77.047119140625, -77.0361328125, -77.0416259765625
234     // //2:[-77.047119140625, -77.0361328125, -77.0416259765625]
235     // //2: -77.047119140625, -77.0361328125, -77.0416259765625
236     //
237     // String topLeft = lat[0]+","+lon[0];
238     // String topRight = lat[0]+","+lon[1];
239     //
240     // String bottomleft = lat[1]+","+lon[0];
241     // String bottoomRight = lat[1]+","+lon[1];
242     // String centerPoint = (lat[0]+lat[1])/2+","+(lon[0]+lon[1])/2;
243     //
244     // String centerTop = lat[0]+","+(lon[0]+lon[1])/2;
245     // String centerBottom = lat[1]+","+(lon[0]+lon[1])/2;
246     //
247     // String centerLeft = (lat[0]+lat[1])/2+","+lon[0];
248     // String centerRight = (lat[0]+lat[1])/2+","+lon[1];
249     // // System.out.println("topLeft:["+topLeft+"] geoHash:"+g.encode(lat[0],
250     // lon[0]));
251     // // System.out.println("topRight:["+topRight+"] geoHash:"+g.encode(lat[0],
252     // lon[1]));
253     // //
254     // System.out.println("bottomleft:["+bottomleft+"] geoHash:"+g.encode(lat[1],
255     // lon[0]));
256     // //
257     // System.out.println("bottoomRight:["+bottoomRight+"] geoHash:"+g.encode(lat[1],
258     // lon[1]));
259     // //
260     // System.out.println("centerPoint:["+centerPoint+"] geoHash:"+g.encode((lat[0]+lat[1])/2,
261     // (lon[0]+lon[1])/2));
262     // //
263     // System.out.println("centerTop:["+centerTop+"] geoHash:"+g.encode(lat[0],
264     // (lon[0]+lon[1])/2));
265     // //
266     // System.out.println("centerBottom:["+centerBottom+"] geoHash:"+g.encode(lat[1],
267     // (lon[0]+lon[1])/2));
268     // //
269     // System.out.println("centerLeft:["+centerLeft+"] geoHash:"+g.encode((lat[0]+lat[1])/2,
270     // lon[0]));
271     // //
272     // System.out.println("centerRight:["+centerRight+"] geoHash:"+g.encode((lat[0]+lat[1])/2,
273     // lon[1]));
274     //
275     // }
276     //
277     // @Deprecated
278     // public static void refine_interval(double[] interval, int cd, int mask){
279     // if ((cd & mask)>0){
280     // interval[0] = (interval[0] + interval[1])/2;
281     // }else{
282     // interval[1] = (interval[0] + interval[1])/2;
283     // }
284     // }
285     //
286
287     // ****************************************************************************************************************
288
289     private static final double EARTH_RADIUS = 6371;// 赤道半径(单位m)
290
291     /**
292      * 转化为弧度(rad)
293      * */
294     private static double rad(double d) {
295         return d * Math.PI / 180.0;
296     }
297
298     /**
299      * 基于googleMap中的算法得到两经纬度之间的距离,计算精度与谷歌地图的距离精度差不多,相差范围在0.2米以下
300      *
301      * @param lon1
302      *            第一点的精度
303      * @param lat1
304      *            第一点的纬度
305      * @param lon2
306      *            第二点的精度
307      * @param lat2
308      *            第二点的纬度
309      * @return 返回的距离,单位m
310      * */
311     public  double getDistance(double lon1, double lat1, double lon2,
312             double lat2) {
313         double radLat1 = rad(lat1);
314         double radLat2 = rad(lat2);
315         double a = radLat1 - radLat2;
316         double b = rad(lon1) - rad(lon2);
317         double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2)
318                 + Math.cos(radLat1) * Math.cos(radLat2)
319                 * Math.pow(Math.sin(b / 2), 2)));
320         s = s * EARTH_RADIUS;
321         s = Math.round(s * 1000)/1000.0;
322         return s;
323     }
324
325     /*
326      * 永相逢超市 108.83457500177 34.256981052624 wqj6us6cmkj5bbfj6qdg s6q08ubhhuq7
327      */
328     public static void main(String[] args) throws Exception {
329
330         // 东四站 灯市口站
331         double lon1 = 116.4174628300;
332         double lat1 = 39.9243669400;
333         double lon2 = 116.4177739600;
334         double lat2 = 39.9171260300;
335         double dist;
336         String geocode;
337
338         Geohash geohash = new Geohash();
339         dist = geohash.getDistance(lon1, lat1, lon2, lat2);
340         System.out.println("两点相距:" + dist + " km");
341
342         geocode = geohash.encode(lat1, lon1);
343         System.out.println("当前位置编码:" + geocode);
344         double[] decode = new Geohash().decode(geocode);
345         for (double d : decode) {
346             System.out.println(d);
347         }
348
349         geocode = geohash.encode(lat2, lon2);
350         System.out.println("远方位置编码:" + geocode);
351         decode = new Geohash().decode(geocode);
352         for (double d : decode) {
353             System.out.println(d);
354         }
355
356         /* 获取的geohash多少位,位数越长,精度越准 */
357         int geohashLen = 5;
358
359         /* 获取中心点的geohash */
360         String code = geohash.encode(lat1, lon1).substring(0, geohashLen);
361
362         /* 获取所有的矩形geohash, 一共是九个 ,包含中心点,打印顺序请参考图2 */
363         String[] result = geohash.getGeoHashExpand(code);
364         for (String string : result) {
365             System.out.println(string);
366         }
367
368     }
369
370 }

原理看起来很容易懂的样子,就是分区编码。但仔细一想却不是那么简单。算法设计,编码设计,为什么相似等等,现在只会痛恨当时为啥不好好学数学。

那么,只要在上传位置信息的时候计算geohash,然后根据geohash的精度前缀进行匹配查询就可以搜索附近的人。但有两个问题。

问题1:

  计算的附近的概念不精准,仅仅只是一个区域,在边界问题上需要考虑。距离相近的在边界位置geohash显示却在两块区域。因此引入周围8个区域来精算中间一个区域的位置。这样做会把中间区域周围的包含,但最大范围无法估量。因为周围8块所代表的的精度算法,仅仅是该区域内的,而不是包含所有。就是说,假如中间区域精度1km以内,我需要将周围的区域加上才能把全部1km以内的位置包含。如下图所示:

我按照0110的编码匹配,只能得到红色区域内的位置。倘若客户站在区域中心,那么正好该区域的精度就是距离客户的最大距离。但是,在其他区域的客户,比如红点。记红点为A点,A点距离最近的除了0110还包括另外三个区域的点。这样,若仅仅只按中心区域0110搜索附近的人反而不是正确的。于是引入周围8个区域的点。这样,可以把0110区域的人的附近的点全部包含。

距离:

   记一个geohash的精度(区域的边长)为len,记最大距离为可以搜索到的最远的附近的位置,记最小距离为该距离内的所有位置必然包含在内。比如最小距离为d,则方圆为d的距离内的所有点都包含。

     位于中心区域0110的人最大附近距离为:两个对角线b=2√2len。最小距离为:a=len

再次重申:可以肯定搜索到一个精度内的所有人,但还可以包含附近大于一个精度达部分人。

问题2:

  距离需要进行2次计算。若有排序概念还需要排序。

我的抉择:

  我选择了匹配前6位,测试距离大概1km以内。然后面临另一个问题:分页。

分页:

客户端滚动加载,我一次查完9个区域内所有点,然后根据时间排序。选取该时间之前的n条记录。第一页就是前n条。第一页最后一条的时间为t1,第二页就是t1时间往前的的n条,以此类推。那么,问题来了。假如第一页花费时间t,在这段时间内,本来第二页的数据位置信息更新(每次更新后时间改变);然后查询第二页的时候,变动的数据不包含在内了。也就是说,遗漏了变化的点。

在我看来,位置信息可以延时,但不要遗漏。因为喜欢查看附近的人的位置通常是实时改变的,而我们遗漏的恰恰就是互相有需求的双方。所以,要一次查询一个很大范围内的数据。

办法:

我一次将9个区域的点全部取出,然后缓存。由于geohash区域内的人共享一个查询,因此将geohash的前缀作为key来缓存该区域附近的点。那么,其他该区域的人也可以使用本次查询的结果。

用java做分页处理。

第一次请求,所有数据缓存。然后取出前n个,如果排序,则排序后的前n个。缓存信息不可以改变。第二次请求,计算缓存的索引n开始的n个。....

 缺点:

我需要每次都计算距离,排序。

思考:

我想要第一次计算完之后缓存数据,然后第二次直接取出想要的部分。进而省略每次的计算。接着,问题来了。

第一次数据库的查询数据缓存,标记为key_all;客户a通过缓存计算距离,排序,放入缓存,标记为key_a;显然,两个缓存有大量的重复数据。如果仅仅是标记索引,那计算结果的部分无法保存,所以需要复制而后修改,而后存储。虽然省略了部分计算,但加大了内存需求。

对于时间和空间的问题,我们再来看需求。需求是附近的人,而我查看附近的人的翻页频率并不高,也就是说每次计算的次数很少。那我可以不用为了减少部分计算而加大存储。因为加大存储需要空间加倍,而减少计算影响不大。所以放弃每人都缓存数据。采用每次翻页时计算需要的数据。

然后,面临两个问题。

第一个:ehcache读取后的数据,被计算修改后缓存相应改变,因为对象引用相同。

然后我花了两天看反射和序列化,最后采用序列化来复制缓存对象。成功后又觉得不对,缓存显然是有序列化的,我干嘛重复加工,找到配置,copyOnRead="true" copyOnWrite="true"。解决。

第二个:排序和分页的计算方法。

客户分页的时候也会传新的位置过来,位置必然发生改变。那么按照上次分页计算的距离就不能使用了。

也就是说,我需要用户只传递一次位置,只在第一页请求的时候传递位置,往后的页码忽略其位置。因此,还需要保存第一次请求的位置。首先我要区分第一次和其他。根据现有标记无法区分,因为是按照时间排序的。所以不能区分,也就不能忽略。也就是,用户每次请求传递位置和时间。查询该位置附近该时间之前的n条记录。

finally:缓存边界

缓存是有时间限制的,如果用户第一页查询完后,第二页缓存更新,第二页就不能和第一页衔接了。

所以,为了逻辑上还是拓扑上啥的,严谨不漏。我不能接着查询第二页了。也就是读取缓存的时候,策略需要改变。若缓存不在,重新缓存数据,并查询第一页,告诉客户端刷新页面而不是请求第二页。缺点是若用户第二页是缓存结束前访问的就只能刷新,用户体验不好。所以还是不提示了?我不是产品,但严谨的态度来说,我悄悄更新?也就是第二页数据若缓存不在,我就接着查询缓存第一页作为第二页给客户端。又想多了,我不是根据页码分页的,而是根据时间分页的。那么缓存更新的时候需不需要限制时间呢。我需要按时间排序,而且需要全部数据缓存。所以不能限制时间。这样,取出新缓存的数据中,前n条,忽视时间。当缓存存在而不更新的时候才按照时间取下一组数据。客户端虽然会发现和第一页一样的数据,但时间不一样了。为了避免缓存边界的发生,我或许应该延长缓存时间。

时间: 2024-10-25 19:20:02

附近的人位置距离计算方法的相关文章

数据点间的相似度-距离计算方法

在分类聚类算法,推荐系统中,常要用到两个输入变量(通常是特征向量的形式)距离的计算,即相似性度量.不同相似性度量对于算法的结果,有些时候,差异很大.因此,有必要根据输入数据的特征,选择一种合适的相似性度量方法. 令X=(x1,x2,..,xn)T,Y=(y1,y2,...yn)T为两个输入向量, 1.欧几里得距离(Euclidean distance)-EuclideanDistanceMeasure. ‍ 相当于高维空间内向量说表示的点到点之间的距离.由于特征向量的各分量的量纲不一致,通常需要

php 关于经纬度距离计算方法 成功版

1.PHP实现通过经纬度计算距离 单位为公里 function getdistance($lng1,$lat1,$lng2,$lat2)//根据经纬度计算距离 { //将角度转为狐度  $radLat1=deg2rad($lat1); $radLat2=deg2rad($lat2); $radLng1=deg2rad($lng1); $radLng2=deg2rad($lng2); $a=$radLat1-$radLat2;//两纬度之差,纬度<90 $b=$radLng1-$radLng2;/

距离计算方法总结 转自http://www.cnblogs.com/xbinworld/archive/2012/09/24/2700572.html#2663469

在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance).采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否. 本文的目的就是对常用的相似性度量作一个总结. 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 夹角余弦 8. 汉明距离 9. 杰卡德距离 & 杰卡德相似系数 10. 相关系数 & 相关距离

LBS地理位置距离计算方法之geohash算法

随着移动终端的普及,很多应用都基于LBS功能,附近的某某(餐馆.银行.妹纸等等).基础数据中,一般保存了目标位置的经纬度:利用用户提供的经纬度,进行对比,从而获得是否在附近.这里需要在设置出一个字段,是关于编码的字段,一会看下文哈…… 地理位置距离实现目标:查找附近多少公里内的人或者商家 比如:微信.陌陌.美团.基于O2O的一些APP这些应用或者移动网页都需要用到地理位置计算 目前来说:移动地理位置距离计算比较好的算法是geohash,特此整理分享. geohash有以下几个特点: 第一:geo

HTML中常见的各种位置距离(clientTop clientLeft clientWidth ClientHeight offsetleft offsettop offsetwidth offsetheight等等)以及dom中的坐标讨论

最近在学习JavaScript,特意买了一本犀牛角书来看看,尼玛一千多页,看的我头昏脑涨,翻到DOM这章节,突然记起平常在使用DOM时,碰到了好多的这个dom里面的各种宽度,高度,特意在此写一写,写的不好或者写错了,欢迎各位指正.好了废话不多说,开始进入主题. 这篇文章主要讨论两点: 一.DOM中各种宽度.高度 二.DOM中的坐标系 下面我们看看DOM中都有一些什么宽度.高度. 常见的 offsetWidth clientWidth scrollWidth offsetHeight client

js和jq中常见的各种位置距离之offsetLeft和position().left的区别(四)

offsetLeft:元素的边框的外边缘距离与已定位的父容器(offsetparent)的左边距离(不包括元素的边框和父容器的边框).position().left:使用position().left方法时事实上是把该元素当绝对定位来处理,获取的是该元素相当于最近的一个拥有绝对或者相对定位的父元素的偏移位置. 附上调试代码: 1 <style> 2 *{margin:0;padding:0;} 3 #parent{ position: relative; padding: 10px; marg

js和jq中常见的各种位置距离之offset和offset()的区别(三)

offsetLeft:元素的边框的外边缘距离与已定位的父容器(offsetparent)的左边距离(不包括元素的边框和父容器的边框). offset().left:返回的是相对于当前文档的坐标,使用offset()方法不管该元素如何定位,也不管其父元素如何定位,都是获取的该元素相对于当前窗口的偏移坐标 附上调试代码: 1 <style> 2 *{margin:0;padding:0;} 3 #parent{ position: relative; padding: 10px; margin:3

地里位置距离排序,根据经纬度

ROUND(6378.138 * 2 * ASIN(SQRT(POW(SIN((30.572269 * PI() / 180 - qw_ca_lat * PI() / 180) / 2),2) + COS(30.572269 * PI() / 180) * COS(qw_ca_lat * PI() / 180) * POW(SIN((104.066541 * PI() / 180 - qw_ca_lng * PI() / 180) / 2),2))) * 1000)

[转]距离的计算方法

1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式. (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: 2. 曼哈顿距离(Manhattan Distance) 想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼.实际驾驶距离就是这个“曼哈顿距离”.而这也是曼哈顿