Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 22764 | Accepted: 13344 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9这道题很简单,一遍AC,用flag数组记录左括号的状态,当是1时已经匹配,当是0时未匹配,向前查找第一个未匹配的左括号,记录中间匹配的左括号的个数
1 #include <iostream> 2 using namespace std; 3 4 int main() { 5 int num; 6 int n; 7 int p[21]; 8 int flag[21]; 9 cin>>num; 10 for(int i=0;i<num;i++){ 11 cin>>n; 12 for(int j=0;j<n;j++){ 13 cin>>p[j]; 14 flag[j]=0; 15 } 16 for(int k=0;k<n;k++){ 17 int count=0; 18 for(int m=p[k]-1;m>=0;m--){ 19 if(flag[m]==0){ 20 cout<<count+1<<" "; 21 flag[m]=1; 22 break; 23 }else{ 24 count++; 25 } 26 } 27 } 28 cout<<endl; 29 } 30 return 0; 31 }