poj_2774 后缀数组

题目大意

给定两个字符串A,B,求出A和B中最长公共子串的长度。

题目分析

字符串的子串可以认为是是字符串的某个后缀的前缀,而求最长公共子串相当于A和B的某两个后缀的最长相同前缀。可以考虑使用后缀数组,将A和B连接起来,中间添加一个在A和B中都未出现过的字符隔开,然后求这个新串的后缀数组以及height数组。**height数组是后缀Suffix(SA[i])和Suffix(SA[i-1])的公共前缀的最长长度。 
    容易知道,
满足题目要求的两个子串S1,S2在后缀数组中肯定排名相邻(用反证法可以证明)**。这样就可以利用height数组,遍历一遍 height数组,要求 SA[i]和SA[i-1]分别属于A和B,同时height最大。 
    求后缀数组,使用倍增算法,时间复杂度O(nlogn);求height数组,时间复杂度O(n);遍历height数组,求SA[i]、SA[i-1]属于不同串的height[i]最大值,时间复杂度O(n)。因此总的时间复杂度为 O(nlogn)

注意: 
    判断SA[i]和SA[i-1]属于不同的串,设n为第一个串的长度。通过(SA[i] - n)*(SA[i-1]-n) < 0时,由于数据过大,使用int类型会出现溢出,因此需要使用long long int类型。

实现(c++)
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#define LETTERS 30
#define MAX_ARRAY_SIZE 200005
int gSuffixArray[MAX_ARRAY_SIZE];
int gCount[MAX_ARRAY_SIZE];
int gOrderBySecondKey[MAX_ARRAY_SIZE];
int gRank[MAX_ARRAY_SIZE];
int gFirstKeyArray[MAX_ARRAY_SIZE];
int gHeight[MAX_ARRAY_SIZE];
int gStr[MAX_ARRAY_SIZE];
int gStrLen;
bool Compare(int* arr, int a, int b, int step){
	return arr[a] == arr[b] && arr[a + step] == arr[b + step];
}

void GetStr(char* str){
	memset(gStr, 0, sizeof(gStr));
	gStrLen = strlen(str);
	for (int i = 0; i < gStrLen; i++){
		gStr[i] = str[i] - ‘a‘ + 1;
	}
	gStr[gStrLen] = 0;
	gStrLen++;
}

void GetSuffixArray(){
	int n = gStrLen;
	memset(gCount, 0, sizeof(gCount));
	for (int i = 0; i < n; i++){
		gRank[i] = gStr[i];
		gCount[gRank[i]] ++;
	}
	int m = LETTERS;
	for (int i = 1; i < m; i++){
		gCount[i] += gCount[i - 1];
	}
	for (int i = n - 1; i >= 0; i--){
		gSuffixArray[--gCount[gRank[i]]] = i;
	}

	int step = 1;
	int *rank = gRank, *order_by_second_key = gOrderBySecondKey;
	while (step < n){
		int p = 0;

		for (int i = n - step; i < n; i++){
			order_by_second_key[p++] = i;
		}
		for (int i = 0; i < n; i++){
			if (gSuffixArray[i] >= step){
				order_by_second_key[p++] = gSuffixArray[i] - step;
			}
		}
		for (int i = 0; i < n; i++){
			gFirstKeyArray[i] = rank[order_by_second_key[i]];
		}
		for (int i = 0; i < m; i++){
			gCount[i] = 0;
		}
		for (int i = 0; i < n; i++){
			gCount[gFirstKeyArray[i]] ++;
		}
		for (int i = 1; i < m; i++){
			gCount[i] += gCount[i - 1];
		}
		for (int i = n - 1; i >= 0; i--){
			gSuffixArray[--gCount[gFirstKeyArray[i]]] = order_by_second_key[i];
		}
		int* tmp = rank; rank = order_by_second_key; order_by_second_key = tmp;
		rank[gSuffixArray[0]] = p = 0;
		for (int i = 1; i < n; i++){
			if (Compare(order_by_second_key, gSuffixArray[i], gSuffixArray[i - 1], step)){
				rank[gSuffixArray[i]] = p;
			}
			else{
				rank[gSuffixArray[i]] = ++p;
			}
		}
		m = p + 1;
		step *= 2;
	}
}
void GetHeight(){
	int n = gStrLen;
	for (int i = 0; i < n; i++){
		gRank[gSuffixArray[i]] = i;
	}
	int k = 0, j;
	for (int i = 0; i < n; i++){
		if (k){
			k--;
		}
		j = gSuffixArray[gRank[i] - 1];
		while (j + k < n && i + k < n&& gStr[i + k] == gStr[j + k]){
			k++;
		}
		gHeight[gRank[i]] = k;
	}
}

char str[MAX_ARRAY_SIZE];
int main(){
	scanf("%s", str);
	int n = strlen(str);
	str[n] = ‘a‘ + 27;
	scanf("%s", str + n + 1);
	GetStr(str);
	GetSuffixArray();
	GetHeight();
	int max = 0;
	for (int i = 1; i < gStrLen; i++){
		if (gHeight[i] > max){
			if ((gSuffixArray[i] > n && gSuffixArray[i-1] < n) || (gSuffixArray[i - 1] > n && gSuffixArray[i] < n)){
				max = gHeight[i];
			}
		}
	}
	printf("%d\n", max);
	return 0;
}
时间: 2024-12-19 04:05:38

poj_2774 后缀数组的相关文章

SPOJ 705 Distinct Substrings(后缀数组)

[题目链接] http://www.spoj.com/problems/SUBST1/ [题目大意] 给出一个串,求出不相同的子串的个数. [题解] 对原串做一遍后缀数组,按照后缀的名次进行遍历, 每个后缀对答案的贡献为n-sa[i]+1-h[i], 因为排名相邻的后缀一定是公共前缀最长的, 那么就可以有效地通过LCP去除重复计算的子串. [代码] #include <cstdio> #include <cstring> #include <algorithm> usi

hdu5769--Substring(后缀数组)

题意:求含有某个字母的某个字符串的不同子串的个数 题解:后缀数组,记录每个位置距离需要出现的字母的距离就可以了.因为不太了解后缀模版卡了一会,还是很简单的. 记住sa和height数组都是1-n的下标. //后缀数组 #include <stdio.h> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll;

hdu 3518 Boring counting 后缀数组LCP

题目链接 题意:给定长度为n(n <= 1000)的只含小写字母的字符串,问字符串子串不重叠出现最少两次的不同子串个数; input: aaaa ababcabb aaaaaa # output 2 3 3 思路:套用后缀数组求解出sa数组和height数组,之后枚举后缀的公共前缀长度i,由于不能重叠,所以计数的是相邻height不满足LCP >= i的. 写写对后缀数组倍增算法的理解: 1.如果要sa数组对应的值也是1~n就需要在最后加上一个最小的且不出现的字符'#',里面y[]是利用sa数

【tyvj1860】后缀数组

描述 我们定义一个字符串的后缀suffix(i)表示从s[i]到s[length(s)]这段子串.后缀数组(Suffix array)SA[i]中存放着一个排列,满足suffix(sa[i])<suffix(sa[i+1]) 按照字典序方式比较定义height[i]表示suffix(sa[i])与suffix(sa[i-1])之间的最长公共前缀长度,其中height[1]=0你的任务就是求出SA和height这两个数组.字符串长度<=200000 输入格式 一行,为描述中的字符串(仅会出现小写

BZOJ 3238 AHOI 2013 差异 后缀数组+单调栈

题目大意: 思路:一看各种后缀那就是后缀数组没跑了. 求出sa,height之后就可以乱搞了.对于height数组中的一个值,height[i]来说,这个值能够作为lcp值的作用域只在左边第一个比他小的位置到右边第一个比他小的位置.这个东西很明显可以倍增RMQ+二分/单调栈. 之后就是数学题了 Σlen[Ti] + len[Tj] = (len + 1) * len * (len - 1),之后吧所有求出来的Σ2 * lcp(Ti,Tj)减掉就是答案. 记得答案开long long CODE:

hdu 5030 Rabbit&#39;s String(后缀数组&amp;二分)

Rabbit's String Time Limit: 40000/20000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 288    Accepted Submission(s): 108 Problem Description Long long ago, there lived a lot of rabbits in the forest. One day, the

hdu 4416 Good Article Good sentence(后缀数组&amp;思维)

Good Article Good sentence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2308    Accepted Submission(s): 649 Problem Description In middle school, teachers used to encourage us to pick up pre

uva 10829 - L-Gap Substrings(后缀数组)

题目链接:uva 10829 - L-Gap Substrings 题目大意:给定一个字符串,问有多少字符串满足UVU的形式,要求U非空,V的长度为g. 解题思路:对字符串的正序和逆序构建后缀数组,然后枚举U的长度l,每次以长度l分区间,在l和l+d+g所在的两个区间上确定U的最大长度. #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> using nam

poj 3693 Maximum repetition substring(后缀数组)

题目链接:poj 3693 Maximum repetition substring 题目大意:求一个字符串中循环子串次数最多的子串. 解题思路:对字符串构建后缀数组,然后枚举循环长度,分区间确定.对于一个长度l,每次求出i和i+l的LCP,那么以i为起点,循环子串长度为l的子串的循环次数为LCP/l+1,然后再考虑一下从i-l+1~i之间有没有存在增长的可能性. #include <cstdio> #include <cstring> #include <vector>