取石子(一)-博弈数论

取石子(一)

时间限制:3000 ms  |  内存限制:65535 KB

难度:2

描述
一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子。游戏的规则是这样的。设有一堆石子,数量为N(1<=N<=1000000),两个人轮番取出其中的若干个,每次最多取M个(1<=M<=1000000),最先把石子取完者胜利。我们知道,TT和他/她的室友都十分的聪明,那么如果是TT先取,他/她会取得游戏的胜利么?

输入
第一行是一个正整数n表示有n组测试数据

输入有不到1000组数据,每组数据一行,有两个数N和M,之间用空格分隔。

输出
对于每组数据,输出一行。如果先取的TT可以赢得游戏,则输出“Win”,否则输出“Lose”(引号不用输出)
样例输入
2
1000 1
1 100
样例输出
Lose
Win
基础博弈,如果是TT先动,接下来是两人来回取m+1,n%(m+1)为零的话则可以赢,否则输了
/*
Author: 2486
Memory: 232 KB		Time: 4 MS
Language: C/C++		Result: Accepted
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m,T;
int main() {
    scanf("%d",&T);
    while(T--) {
        scanf("%d%d",&n,&m);
        m++;
        printf("%s\n",(n%m)?"Win":"Lose");
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-06 06:36:41

取石子(一)-博弈数论的相关文章

26-又是取石子(博弈)

/*                                        又是取石子  题目内容: "有甲乙两个人玩取石子游戏,共有n个石子(1<=n<=30000)两个人轮流取,甲先取.每次最多取m个(1<=m<=30000)最少取一个,当轮到谁取的时候没有石子了,谁就赢.比如4个石子,每次最多取3个,那末先取的人(甲)一定赢n和m谁大没有限制.)(甲拿走3个,乙只拿走1个,下面轮到甲了,但是没有石子了,甲赢了.)现在要求你写一个程序,输入n(总的石子个数),

取石子(博弈游戏)

问题:一共有N颗石子(或者其他乱七八糟的东西),每次最多取M颗最少取1颗,A,B轮流取,谁最后会获胜?(假设他们每次都取最优解). 先说结论: 假如A先取,N<M,A获胜:  N>M,若N能被(M + 1)整除时,A失败:   若N不能被(M + 1)整除时,A获胜: 假如B先取,(同上): 再说分析: 还是以A先手为例,N<M时A一次拿完(不可能给B留机会,前提就是每次取最优),不会给B留机会: N>M时,A要想赢,必须要在自己倒数第二次取完的时候还剩下(M + 1)颗石子(此时

HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏 题意:中文 思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立 以下转自网上某总结 有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,-,n 方括号表示取整函数) 其中出现了黄金分割数(1+√5)/2 = 1.618-,因此,由ak,bk组成的矩形近似为黄金矩形 由于2/(1+√5)=(√5-1)/2,可以先

nyoj 取石子(三)(尼姆博弈的定理运用)

取石子(三) 时间限制:1000 ms |  内存限制:1000 KB 难度:6 描述 小王喜欢与同事玩一些小游戏,今天他们选择了玩取石子. 游戏规则如下:共有N堆石子,已知每堆中石子的数量,两个人轮流取子,每次只能选择N堆石子中的一堆,取一定数量的石子(最少取一个),取过子之后,还可以将该堆石子中剩下的任意多个石子中随意选取几个放到其它的任意一堆或几堆上.等哪个人无法取子时就表示此人输掉了游戏.注意,一堆石子没有子之后,就不能再往此处放石子了. 假设每次都是小王先取石子,并且游戏双方都绝对聪明

hdoj 2516 取石子游戏(斐波那契博弈)

Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win". Input 输入有多组.每组第1行是2<=n<2^31. n=0退出. Output 先取者负输出"Second win". 先取者胜输出"First win". 参看Samp

梦工厂实验室 取石子之fans 博弈

问题 D: 取石子之fans 时间限制: 1 Sec  内存限制: 64 MB提交: 57  解决: 26[提交][状态][讨论版] 题目描述 Yougth和Hrdv玩一个游戏,拿出n个石子摆成一圈,Yougth和Hrdv分别从其中取石子,谁先取完者胜,每次可以从中取一个或者相邻两个(注意不是“两个”而是“相邻两个”),Yougth先取,两个人足够聪明,不会拿错.输出胜利者的名字. 输入 输入包括多组测试数据.每组测试数据一个正整数n,数据保证int范围内. 输出 输出胜利者的名字. 样例输入

HDU 2516 取石子游戏 斐波纳契博弈

斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍). 约定取走最后一个石子的人为赢家,求必败态. 证明 FBI数为必败局: 1.对于任意一个FBI数 FBI[K]=FBI[K-1]+FBI[K-2],我们可以将FBI[K]看成石子数目分别是FBI[K-1],FBI[K-2]的两堆(一定可以这样分,因为FBI[K-1] > FBI[K-2]*2,若先

nyoj 取石子(八)(威佐夫博弈,多种情况)

取石子(八) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子? 输入 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,

[Wythoff博弈] poj 1067 取石子游戏

题目链接: http://poj.org/problem?id=1067 取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33556   Accepted: 11180 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石