转载:奇异值分解(SVD) --- 线性变换几何意义(上)

本文转载自他人:

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD。

原文:We recommend a singular value decomposition

简介

SVD实际上是数学专业内容,但它现在已经渗入到不同的领域中。SVD的过程不是很好理解,因为它不够直观,但它对矩阵分解的效果却非常好。比如,Netflix(一个提供在线电影租赁的公司)曾经就悬赏100万美金,如果谁能提高它的电影推荐系统评分预测准确率提高10%的话。令人惊讶的是,这个目标充满了挑战,来自世界各地的团队运用了各种不同的技术。最终的获胜队伍"BellKor‘s Pragmatic Chaos"采用的核心算法就是基于SVD。

SVD提供了一种非常便捷的矩阵分解方式,能够发现数据中十分有意思的潜在模式。在这篇文章中,我们将会提供对SVD几何上的理解和一些简单的应用实例。

线性变换的几何意义(The geometry of linear transformations)

让我们来看一些简单的线性变换例子,以 2 X 2 的线性变换矩阵为例,首先来看一个较为特殊的,对角矩阵:

从几何上讲,M 是将二维平面上的点(x,y)经过线性变换到另外一个点的变换矩阵,如下图所示

变换的效果如下图所示,变换后的平面仅仅是沿 X 水平方面进行了拉伸3倍,垂直方向是并没有发生变化。

现在看下矩阵

这个矩阵产生的变换效果如下图所示

这种变换效果看起来非常的奇怪,在实际环境下很难描述出来变换的规律 ( 这里应该是指无法清晰辨识出旋转的角度,拉伸的倍数之类的信息)。还是基于上面的对称矩阵,假设我们把左边的平面旋转45度角,然后再进行矩阵 M 的线性变换,效果如下图所示:

看起来是不是有点熟悉? 对的,经过 M 线性变换后,跟前面的对角矩阵的功能是相同的,都是将网格沿着一个方向拉伸了3倍。

这里的 M 是一个特例,因为它是对称的。非特殊的就是我们在实际应用中经常遇见一些 非对称的,非方阵的矩阵。如上图所示,如果我们有一个 2 X 2 的对称矩阵 M 的话,我们先将网格平面旋转一定的角度,M 的变换效果就是在两个维度上进行拉伸变换了。

用更加数学的方式进行表示的话,给定一个对称矩阵 M ,我们可以找到一些相互正交 Vi ,满足 MVi 就是沿着 Vi 方向的拉伸变换,公式如下:

Mvi = λivi

这里的 λi 是拉伸尺度(scalar)。从几何上看,M 对向量 Vi 进行了拉伸,映射变换。Vi 称作矩阵 M 的特征向量(eigenvector), λi 称作为矩阵 M 特征值(eigenvalue)。这里有一个非常重要的定理,对称矩阵 M 的特征向量是相互正交的。

如果我们用这些特征向量对网格平面进行线性变换的话,再通过 M 矩阵对网格平面进行线性换的效果跟对 M 矩阵的特征向量进行线性变换的效果是一样的。

对于更为普通的矩阵而言,我们该怎么做才能让一个原来就是相互垂直的网格平面(orthogonal grid), 线性变换成另外一个网格平面同样垂直呢?PS:这里的垂直如图所示,就是两根交错的线条是垂直的。

经过上述矩阵变换以后的效果如图

从图中可以看出,并没有达到我们想要的效果。我们把网格平面旋转 30 度角的话,然后再进行同样的线性变换以后的效果,如下图所示

让我们来看下网格平面旋转60度角的时候的效果。

嗯嗯,这个看起来挺不错的样子。如果在精确一点的话,应该把网格平面旋转 58.28 度才能达到理想的效果。

时间: 2024-12-12 17:35:10

转载:奇异值分解(SVD) --- 线性变换几何意义(上)的相关文章

paper 128:奇异值分解(SVD) --- 线性变换几何意义[转]

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在已经渗入到不同的领

奇异值分解(SVD) --- 几何意义 (转载)

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(S

奇异值分解(SVD) --- 几何意义

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(SVD

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计

[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value decomposition),翻译成中文就是奇异值分解.SVD的用处有很多,比如:LSA(隐性语义分析).推荐系统.特征压缩(或称数据降维).SVD可以理解为:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性. 1.1奇异值分解的几何意义(因公式输入比较麻烦

数值分析之奇异值分解(SVD)篇

在很多线性代数问题中,如果我们首先思考若做SVD,情况将会怎样,那么问题可能会得到更好的理解[1].                                       --Lloyd N. Trefethen & David Bau, lll 为了讨论问题的方便以及实际中遇到的大多数问题,在这里我们仅限于讨论实数矩阵,注意,其中涉及到的结论也很容易将其扩展到复矩阵中(实际上,很多教材采用的是复矩阵的描述方式),另外,使用符号 x,y 等表示向量,A,B,Q等表示矩阵. 首先给出正交矩阵

奇异值分解(SVD)

特征值分解是利用矩阵的对角化来完成的:A=Q∧Q-1,但这种分解方法需要满足一个前提条件,即A是方阵. 奇异值分解(SVD)可以对m x n的矩阵进行分解.我们希望找到一个n x n的正交方阵V.一个m x m的正交方阵U和一个m x n的矩阵∑,使得A满足式子AV=U∑.因为V是正交矩阵,所以V是可逆,且V-1=VT,所以AV=U∑又可以写成A=U∑VT.下面分两步来找到V和U. 1)注意到ATA是一个对称方阵,如果存在一个n x n的正交方阵V.一个m x m的正交方阵U和一个m x n的矩

奇异值分解(SVD)原理详解及推导

声明:转自http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SVD不

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题.不过我想顺便多学习一些有关 SVD 的知识.所以就没直接使用 gsl_fit_linear 函数. SVD