【BZOJ 1041】 [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点

Time Limit: 10 Sec  Memory Limit: 162 MB

Submit: 2196  Solved: 941

[Submit][Status]

Description

求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

Input

r

Output

整点个数

Sample Input

4

Sample Output

4

HINT

n<=2000 000 000

接下来枚举d,a,判断求出的b是否和题意即可。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#define LL long long
using namespace std;
LL r;
int gcd(LL a,LL b)
{
	return a==0LL?b:gcd(b%a,a);
}
bool ok(LL a,LL b)
{
	if (a==b||gcd(a,b)!=1LL) return false;
	return true;
}
int main()
{
        scanf("%lld",&r);
	LL ans=0;
	for (LL d=1LL;d<=sqrt(2LL*r);d++)
		if ((2LL*r)%d==0LL)
		{
			for (LL a=1;a<=sqrt(r/d);a++)
			{
				LL b=sqrt(2LL*r/d-a*a);
				if (b*b!=(2LL*r/d-a*a)) continue;
				if (ok(a,b)) ans++;
			}
			if (d*d!=2LL*r)
			{
				for (LL a=1LL;a<=sqrt(d/2);a++)
				{
					LL b=sqrt(d-a*a);
					if (b*b!=d-a*a) continue;
					if (ok(a,b)) ans++;
				}
			}
		}
	cout<<ans*4LL+4LL<<endl;
	return 0;
}

感悟:

1.其实这个题挺好推的,关键是有勇气推下去。。

时间: 2024-10-14 18:49:22

【BZOJ 1041】 [HAOI2008]圆上的整点的相关文章

BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Status][Discuss] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT 科普视频 So

BZOJ 1041 [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点 Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 鸣谢:http://blog.csdn.net/csyzcyj/article/details/10044629  http://hzwer.com/1457.html 这么一到水题竟然卡了我一晚上,想起来确

bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Status] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input r Output 整点个数 Sample Input 4 Sample Output 4 HINT n<=2000 000 000 Source 這道題可用本原勾股數組解,由於本原

BZOJ 1041 HAOI2008 圆上的整点 数论

题目大意:给定一个半径为为r的圆x^2+y^2=r^2,求圆上多少个点的坐标为整数 卡了很久的一道题...我之前用了两个公式,理论上可以O(√n)出解,可惜这两个公式并不能涵盖所有勾股数... 于是去找了下题解,发现这样一种方法:(原帖地址: http://www.cppblog.com/zxb/archive/2010/10/18/130330.html ) x^2+y^2=r^2 化简为 y^2=(r-x)(r+x) 我们令d=gcd(r-x,r+x) 则(r-x)/d与(r+x)/d一定互

1041: [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Status][Discuss] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT 科普视频 /*

【BZOJ】 1041: [HAOI2008]圆上的整点

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 ${x^{2}+y^{2}=r^{2} }$ ${\Rightarrow y^{2}=(r-x)(r+x)}$ 令${d=gcd(r-x,r+x)}$ 则${y^{2}=d^{2}*\frac{r+x}{d}*\frac{r-x}{d}}$ 再令${A=\frac{r+x}{d}}$,${B=\frac{r-x}{d}}$ 则${y^{2}=d^{2}*A*B}$ 考虑${y^{2

bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 = (R+Y)(R-Y) 令  d=gcd(R+Y,R-Y),A=(R+Y)/d,B=(R-Y)/d 则 gcd(A,B)=1,且A != B X^2= d^2 *A * B 所以 A * B 为 完全平方数 又因为 gcd(A,B)=1 ,A!=B,所以 A,B 都是 完全平方数 令 a= 根号A,b=根号

[HAOI2008]圆上的整点

题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 n<=2000 000 000 接下来枚举d,a 为什么要除d? 因为他们不互质,a*b是完全平方数≠a,b都是完全平方数 记住还要a*a,b*b互质 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring>

[BZOJ1041] [HAOI2008] 圆上的整点 (数学)

Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT Source Solution 网上有一个很好的证明 1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 5 ll gcd(ll a,