裸网络流最大流题, 我使用了EdmondsKarp算法来解决这个问题, 其中1是源点, m是汇点。代码如下:
/* ID: m1500293 LANG: C++ PROG: ditch */ #include <cstdio> #include <algorithm> #include <cstring> #include <vector> #include <queue> using namespace std; const int maxn = 205; const int INF = 0x3fffffff; struct Edge { int from, to, cap, flow; Edge(int u, int v, int c, int f):from(u),to(v),cap(c),flow(f) {} }; struct EdmondsKarp { int n, m; //n个顶点 m条边 vector<Edge> edges; //边数的两倍 vector<int> G[maxn]; int a[maxn]; //起点到i的可改进量 int p[maxn]; //最短路上p的入弧编号 void init() { for(int i=1; i<=n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap) { edges.push_back(Edge(from, to, cap, 0)); edges.push_back(Edge(to, from, 0, 0)); //反向弧 m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } int Maxflow(int s, int t) { int flow = 0; for(;;) { memset(a, 0, sizeof(a)); queue<int> Q; Q.push(s); a[s] = INF; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i=0; i<G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(!a[e.to] && e.cap>e.flow) { p[e.to] = G[x][i]; //记录连接e.to的边 a[e.to] = min(a[x], e.cap-e.flow); Q.push(e.to); } } if(a[t]) break; } if(!a[t]) break; for(int u=t; u!=s; u=edges[p[u]].from) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; } flow += a[t]; } return flow; } }ek; int main() { freopen("ditch.in", "r", stdin); freopen("ditch.out", "w", stdout); int n, m; scanf("%d%d", &n, &m); ek.n = m; ek.m = n; ek.init(); for(int i=0; i<n; i++) { int u, v, f; scanf("%d%d%d", &u, &v, &f); ek.AddEdge(u, v, f); } printf("%d\n", ek.Maxflow(1, m)); return 0; }
时间: 2024-12-08 19:28:14