国外程序员整理的机器学习资源大全

本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。

C++

计算机视觉

  • CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库
  • OpenCV—它提供C++,
    C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统。

通用机器学习

Closure

通用机器学习

Go

自然语言处理

  • go-porterstemmer—一个Porter词干提取算法的原生Go语言净室实现
  • paicehusk—Paice/Husk词干提取算法的Go语言实现
  • snowball—Go语言版的Snowball词干提取器

通用机器学习

  • Go
    Learn
    — Go语言机器学习库
  • go-pr —Go语言机器学习包.
  • bayesian—Go语言朴素贝叶斯分类库。
  • go-galib—Go语言遗传算法库。

数据分析/数据可视化

  • go-graph—Go语言图形库。
  • SVGo—Go语言的SVG生成库。

Java

自然语言处理

  • CoreNLP—斯坦福大学的CoreNLP提供一系列的自然语言处理工具,输入原始英语文本,可以给出单词的基本形式(下面Stanford开头的几个工具都包含其中)。
  • Stanford
    Parser
    —一个自然语言解析器。
  • Stanford
    POS Tagger
     —一个词性分类器。
  • Stanford
    Name Entity Recognizer
    —Java实现的名称识别器
  • Stanford
    Word Segmenter
    —分词器,很多NLP工作中都要用到的标准预处理步骤。
  • Tregex,
    Tsurgeon and Semgrex
     —用来在树状数据结构中进行模式匹配,基于树关系以及节点匹配的正则表达式(名字是“tree regular expressions”的缩写)。
  • Stanford
    Phrasal:
    最新的基于统计短语的机器翻译系统,java编写
  • Stanford
    Tokens Regex
    —用以定义文本模式的框架。
  • Stanford
    Temporal Tagger
    —SUTime是一个识别并标准化时间表达式的库。
  • Stanford
    SPIED
    —在种子集上使用模式,以迭代方式从无标签文本中学习字符实体
  • Stanford
    Topic Modeling Toolbox
     —为社会科学家及其他希望分析数据集的人员提供的主题建模工具。
  • Twitter
    Text Java
    —Java实现的推特文本处理库
  • MALLET -—基于Java的统计自然语言处理、文档分类、聚类、主题建模、信息提取以及其他机器学习文本应用包。
  • OpenNLP—处理自然语言文本的机器学习工具包。
  • LingPipe —使用计算机语言学处理文本的工具包。

通用机器学习

  • MLlib
    in Apache Spark
    —Spark中的分布式机器学习程序库
  • Mahout —分布式的机器学习库
  • Stanford
    Classifier
     —斯坦福大学的分类器
  • Weka—Weka是数据挖掘方面的机器学习算法集。
  • ORYX—提供一个简单的大规模实时机器学习/预测分析基础架构。

数据分析/数据可视化

  • Hadoop—大数据分析平台
  • Spark—快速通用的大规模数据处理引擎。
  • Impala —为Hadoop实现实时查询

Javascript

自然语言处理

  • Twitter-text-js —JavaScript实现的推特文本处理库
  • NLP.js —javascript及coffeescript编写的NLP工具
  • natural—Node下的通用NLP工具
  • Knwl.js—JS编写的自然语言处理器

数据分析/数据可视化

通用机器学习

  • Convnet.js—训练深度学习模型的JavaScript库。
  • Clustering.js—用JavaScript实现的聚类算法,供Node.js及浏览器使用。
  • Decision
    Trees
    —Node.js实现的决策树,使用ID3算法。
  • Node-fann —Node.js下的快速人工神经网络库。
  • Kmeans.js—k-means算法的简单Javascript实现,供Node.js及浏览器使用。
  • LDA.js —供Node.js用的LDA主题建模工具。
  • Learning.js—逻辑回归/c4.5决策树的JavaScript实现
  • Machine
    Learning
    —Node.js的机器学习库。
  • Node-SVM—Node.js的支持向量机
  • Brain —JavaScript实现的神经网络
  • Bayesian-Bandit —贝叶斯强盗算法的实现,供Node.js及浏览器使用。

Julia

通用机器学习

  • PGM—Julia实现的概率图模型框架。
  • DA—Julia实现的正则化判别分析包。
  • Regression—回归分析算法包(如线性回归和逻辑回归)。
  • Local
    Regression
     —局部回归,非常平滑!
  • Naive
    Bayes
     —朴素贝叶斯的简单Julia实现
  • Mixed
    Models
     —(统计)混合效应模型的Julia包
  • Simple
    MCMC
     —Julia实现的基本mcmc采样器
  • Distance—Julia实现的距离评估模块
  • Decision
    Tree
     —决策树分类器及回归分析器
  • Neural —Julia实现的神经网络
  • MCMC —Julia下的MCMC工具
  • GLM —Julia写的广义线性模型包
  • Online
    Learning
  • GLMNet —GMLNet的Julia包装版,适合套索/弹性网模型。
  • Clustering—数据聚类的基本函数:k-means,
    dp-means等。
  • SVM—Julia下的支持向量机。
  • Kernal
    Density
    —Julia下的核密度估计器
  • Dimensionality
    Reduction
    —降维算法
  • NMF —Julia下的非负矩阵分解包
  • ANN—Julia实现的神经网络

自然语言处理

数据分析/数据可视化

杂项/演示文稿

Lua

通用机器学习

  • Torch7

    • cephes —Cephes数学函数库,包装成Torch可用形式。提供并包装了超过180个特殊的数学函数,由Stephen
      L. Moshier开发,是SciPy的核心,应用于很多场合。
    • graph —供Torch使用的图形包。
    • randomkit—从Numpy提取的随机数生成包,包装成Torch可用形式。
    • signal —Torch-7可用的信号处理工具包,可进行FFT,
      DCT, Hilbert, cepstrums, stft等变换。
    • nn —Torch可用的神经网络包。
    • nngraph —为nn库提供图形计算能力。
    • nnx—一个不稳定实验性的包,扩展Torch内置的nn库。
    • optim—Torch可用的优化算法库,包括
      SGD, Adagrad, 共轭梯度算法, LBFGS, RProp等算法。
    • unsup—Torch下的非监督学习包。提供的模块与nn(LinearPsd,
      ConvPsd, AutoEncoder, …)及独立算法 (k-means, PCA)等兼容。
    • manifold—操作流形的包。
    • svm—Torch的支持向量机库。
    • lbfgs—将liblbfgs包装为FFI接口。
    • vowpalwabbit —老版的vowpalwabbit对torch的接口。
    • OpenGM—OpenGM是C++编写的图形建模及推断库,该binding可以用Lua以简单的方式描述图形,然后用OpenGM优化。
    • sphagetti —MichaelMathieu为torch7编写的稀疏线性模块。
    • LuaSHKit —将局部敏感哈希库SHKit包装成lua可用形式。
    • kernel
      smoothing
       —KNN、核权平均以及局部线性回归平滑器
    • cutorch—torch的CUDA后端实现
    • cunn —torch的CUDA神经网络实现。
    • imgraph—torch的图像/图形库,提供从图像创建图形、分割、建立树、又转化回图像的例程
    • videograph—torch的视频/图形库,提供从视频创建图形、分割、建立树、又转化回视频的例程
    • saliency —积分图像的代码和工具,用来从快速积分直方图中寻找兴趣点。
    • stitch —使用hugin拼合图像并将其生成视频序列。
    • sfm—运动场景束调整/结构包
    • fex —torch的特征提取包,提供SIFT和dSIFT模块。
    • OverFeat—当前最高水准的通用密度特征提取器。
  • Numeric
    Lua
  • Lunatic
    Python
  • SciLua
  • Lua
    – Numerical Algorithms
  • Lunum

演示及脚本

  • Core
    torch7 demos repository
    .核心torch7演示程序库

    • 线性回归、逻辑回归
    • 人脸检测(训练和检测是独立的演示)
    • 基于mst的断词器
    • train-a-digit-classifier
    • train-autoencoder
    • optical flow demo
    • train-on-housenumbers
    • train-on-cifar
    • tracking with deep nets
    • kinect demo
    • 滤波可视化
    • saliency-networks
  • Training
    a Convnet for the Galaxy-Zoo Kaggle challenge(CUDA demo)
  • Music
    Tagging
    —torch7下的音乐标签脚本
  • torch-datasets 读取几个流行的数据集的脚本,包括:
    • BSR 500
    • CIFAR-10
    • COIL
    • Street View House Numbers
    • MNIST
    • NORB
  • Atari2600 —在Arcade
    Learning Environment模拟器中用静态帧生成数据集的脚本。

Matlab

计算机视觉

  • Contourlets —实现轮廓波变换及其使用函数的MATLAB源代码
  • Shearlets—剪切波变换的MATLAB源码
  • Curvelets—Curvelet变换的MATLAB源码(Curvelet变换是对小波变换向更高维的推广,用来在不同尺度角度表示图像。)
  • Bandlets—Bandlets变换的MATLAB源码

自然语言处理

  • NLP —一个Matlab的NLP库

通用机器学习

数据分析/数据可视化

  • matlab_gbl—处理图像的Matlab包
  • gamic—图像算法纯Matlab高效实现,对MatlabBGL的mex函数是个补充。

.NET

计算机视觉

  • OpenCVDotNet —包装器,使.NET程序能使用OpenCV代码
  • Emgu
    CV
    —跨平台的包装器,能在Windows, Linus, Mac OS X, iOS, 和Android上编译。

自然语言处理

  • Stanford.NLP
    for .NET
     —斯坦福大学NLP包在.NET上的完全移植,还可作为NuGet包进行预编译。

通用机器学习

  • Accord.MachineLearning —支持向量机、决策树、朴素贝叶斯模型、K-means、高斯混合模型和机器学习应用的通用算法,例如:随机抽样一致性算法、交叉验证、网格搜索。这个包是Accord.NET框架的一部分。
  • Vulpes—F#语言实现的Deep
    belief和深度学习包,它在Alea.cuBase下利用CUDA GPU来执行。
  • Encog —先进的神经网络和机器学习框架,包括用来创建多种网络的类,也支持神经网络需要的数据规则化及处理的类。它的训练采用多线程弹性传播。它也能使用GPU加快处理时间。提供了图形化界面来帮助建模和训练神经网络。
  • Neural Network
    Designer
     —这是一个数据库管理系统和神经网络设计器。设计器用WPF开发,也是一个UI,你可以设计你的神经网络、查询网络、创建并配置聊天机器人,它能问问题,并从你的反馈中学习。这些机器人甚至可以从网络搜集信息用来输出,或是用来学习。

数据分析/数据可视化

  • numl —numl这个机器学习库,目标就是简化预测和聚类的标准建模技术。
  • Math.NET
    Numerics
    —Math.NET项目的数值计算基础,着眼提供科学、工程以及日常数值计算的方法和算法。支持 Windows, Linux 和 Mac上的 .Net 4.0, .Net 3.5 和 Mono ,Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 以及装有 PCL Portable Profiles 47 及 344的Windows 8, 装有 Xamarin的Android/iOS 。
  • Sho —Sho是数据分析和科学计算的交互式环境,可以让你将脚本(IronPython语言)和编译的代码(.NET)无缝连接,以快速灵活的建立原型。这个环境包括强大高效的库,如线性代数、数据可视化,可供任何.NET语言使用,还为快速开发提供了功能丰富的交互式shell。

Python

计算机视觉

  • SimpleCV—开源的计算机视觉框架,可以访问如OpenCV等高性能计算机视觉库。使用Python编写,可以在Mac、Windows以及Ubuntu上运行。

自然语言处理

  • NLTK —一个领先的平台,用来编写处理人类语言数据的Python程序
  • Pattern—Python可用的web挖掘模块,包括自然语言处理、机器学习等工具。
  • TextBlob—为普通自然语言处理任务提供一致的API,以NLTK和Pattern为基础,并和两者都能很好兼容。
  • jieba—中文断词工具。
  • SnowNLP —中文文本处理库。
  • loso—另一个中文断词库。
  • genius —基于条件随机域的中文断词库。
  • nut —自然语言理解工具包。

通用机器学习

  • Bayesian
    Methods for Hackers
     —Python语言概率规划的电子书
  • MLlib
    in Apache Spark
    —Spark下的分布式机器学习库。
  • scikit-learn—基于SciPy的机器学习模块
  • graphlab-create —包含多种机器学习模块的库(回归,聚类,推荐系统,图分析等),基于可以磁盘存储的DataFrame。
  • BigML—连接外部服务器的库。
  • pattern—Python的web挖掘模块
  • NuPIC—Numenta公司的智能计算平台。
  • Pylearn2—基于Theano的机器学习库。
  • hebel —Python编写的使用GPU加速的深度学习库。
  • gensim—主题建模工具。
  • PyBrain—另一个机器学习库。
  • Crab —可扩展的、快速推荐引擎。
  • python-recsys —Python实现的推荐系统。
  • thinking
    bayes
    —关于贝叶斯分析的书籍
  • Restricted
    Boltzmann Machines
     —Python实现的受限波尔兹曼机。[深度学习]。
  • Bolt —在线学习工具箱。
  • CoverTree —cover
    tree的Python实现,scipy.spatial.kdtree便捷的替代。
  • nilearn—Python实现的神经影像学机器学习库。
  • Shogun—机器学习工具箱。
  • Pyevolve —遗传算法框架。
  • Caffe —考虑了代码清洁、可读性及速度的深度学习框架
  • breze—深度及递归神经网络的程序库,基于Theano。

数据分析/数据可视化

  • SciPy —基于Python的数学、科学、工程开源软件生态系统。
  • NumPy—Python科学计算基础包。
  • Numba —Python的低级虚拟机JIT编译器,Cython
    and NumPy的开发者编写,供科学计算使用
  • NetworkX —为复杂网络使用的高效软件。
  • Pandas—这个库提供了高性能、易用的数据结构及数据分析工具。
  • Open
    Mining
    —Python中的商业智能工具(Pandas web接口)。
  • PyMC —MCMC采样工具包。
  • zipline—Python的算法交易库。
  • PyDy—全名Python
    Dynamics,协助基于NumPy, SciPy, IPython以及 matplotlib的动态建模工作流。
  • SymPy —符号数学Python库。
  • statsmodels—Python的统计建模及计量经济学库。
  • astropy —Python天文学程序库,社区协作编写
  • matplotlib —Python的2D绘图库。
  • bokeh—Python的交互式Web绘图库。
  • plotly —Python
    and matplotlib的协作web绘图库。
  • vincent—将Python数据结构转换为Vega可视化语法。
  • d3py—Python的绘图库,基于D3.js。
  • ggplot —和R语言里的ggplot2提供同样的API。
  • Kartograph.py—Python中渲染SVG图的库,效果漂亮。
  • pygal—Python下的SVG图表生成器。
  • pycascading

杂项脚本/iPython笔记/代码库

Kaggle竞赛源代码

Ruby

自然语言处理

  • Treat—文本检索与注释工具包,Ruby上我见过的最全面的工具包。
  • Ruby
    Linguistics
    —这个框架可以用任何语言为Ruby对象构建语言学工具。包括一个语言无关的通用前端,一个将语言代码映射到语言名的模块,和一个含有很有英文语言工具的模块。
  • Stemmer—使得Ruby可用
    libstemmer_c中的接口。
  • Ruby
    Wordnet
     —WordNet的Ruby接口库。
  • Raspel —aspell绑定到Ruby的接口
  • UEA
    Stemmer
    —UEALite Stemmer的Ruby移植版,供搜索和检索用的保守的词干分析器
  • Twitter-text-rb—该程序库可以将推特中的用户名、列表和话题标签自动连接并提取出来。

通用机器学习

数据分析/数据可视化

Misc

杂项

R

通用机器学习

数据分析/数据可视化

Scala

自然语言处理

  • ScalaNLP—机器学习和数值计算库的套装
  • Breeze —Scala用的数值处理库
  • Chalk—自然语言处理库。
  • FACTORIE—可部署的概率建模工具包,用Scala实现的软件库。为用户提供简洁的语言来创建关系因素图,评估参数并进行推断。

数据分析/数据可视化

  • MLlib
    in Apache Spark
    —Spark下的分布式机器学习库
  • Scalding —CAscading的Scala接口
  • Summing
    Bird
    —用Scalding 和 Storm进行Streaming MapReduce
  • Algebird —Scala的抽象代数工具
  • xerial —Scala的数据管理工具
  • simmer —化简你的数据,进行代数聚合的unix过滤器
  • PredictionIO —供软件开发者和数据工程师用的机器学习服务器。
  • BIDMat—支持大规模探索性数据分析的CPU和GPU加速矩阵库。

通用机器学习

  • Conjecture—Scalding下可扩展的机器学习框架
  • brushfire—scalding下的决策树工具。
  • ganitha —基于scalding的机器学习程序库
  • adam—使用Apache
    Avro, Apache Spark 和 Parquet的基因组处理引擎,有专用的文件格式,Apache 2软件许可。
  • bioscala —Scala语言可用的生物信息学程序库
  • BIDMach—机器学习CPU和GPU加速库。
时间: 2024-11-03 21:26:48

国外程序员整理的机器学习资源大全的相关文章

推荐!国外程序员整理的机器学习资源大全

推荐!国外程序员整理的机器学习资源大全 本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 伯乐在线已在 GitHub 上发起「机器学习资源大全中文版」的整理.欢迎扩散.欢迎加入. https://github.com/jobbole/awesome-machine-learning-cn C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows

推荐!国外程序员整理的机器学习资源大全(转)

本文由 伯乐在线 - toolate 翻译自 awesome-machine-learning.欢迎加入技术翻译小组.转载请参见文章末尾处的要求. 本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 通用机器学习 MLPack

[Machine Learning] 国外程序员整理的机器学习资源大全

本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3

【转】国外程序员整理的Java资源大全

Java几乎是许多程序员们的入门语言,并且也是世界上非常流行的编程语言.国外程序员Andreas Kull在其Github上整理了非常优秀的Java开发资源,推荐给大家.译文由ImportNew- 唐尤华翻译完成. 以下为具体资源列表. 构建 这里搜集了用来构建应用程序的工具. Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建.Maven优于Apache Ant.后者采用了一种过程化的方式进行配置,所以维护起来相当困难. Gradle:Grad

国外程序员整理的Java资源大全分享

Java 几乎是许多程序员们的入门语言,并且也是世界上非常流行的编程语言.国外程序员 Andreas Kull 在其 Github 上整理了非常优秀的 Java 开发资源,推荐给大家. 译文由 ImportNew- 唐尤华翻译完成. 以下为具体资源列表. 构建 这里搜集了用来构建应用程序的工具. Apache Maven:Maven 使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建.Maven 优于 Apache Ant.后者采用了一种过程化的方式进行配置,所以维护起来相当困难.

推荐!国外程序员整理的系统管理员资源大全(转)

受其他程序员汇编 PHP 资源,kahun 在 Github 发起系统管理员相关的开源资源整理. 内容分类包括:备份/克隆软件.云计算/云存储.协作软件.配置管理.日志管理.监控.项目管理…… 当然也有系统管理员相关书籍. 另外推荐一篇文章:<10本适合于系统管理员的最佳书籍>,目前比 kahun 他们整理的列表更丰富. 备份 备份软件 Amanda -客户端-服务器模型备份工具 Bacula - 另一个客户端-服务器模型备份工具 Backupninja -轻量级,可扩展的元数据备份系统 Ba

推荐!国外程序员整理的系统管理员资源大全

备份 备份软件 Amanda -客户端-服务器模型备份工具 Bacula - 另一个客户端-服务器模型备份工具 Backupninja -轻量级,可扩展的元数据备份系统 Backuppc -客户端-服务器模型备份工具和文件共享方案. Burp -网络备份和还原程序 Duplicity -使用rsync算法加密的带宽-效率备份 Lsyncd -监控一个本地目录树的变化,然后产生一个进程去同步变化.默认使用rsync. Rsnapshot -文件系统快照工具 SafeKeep -使用rdiff-ba

【转】国外程序员整理的 C++ 资源大全

内容包括:标准库.Web应用框架.人工智能.数据库.图片处理.机器学习.日志.代码分析等. 标准库 C++标准库,包括了STL容器,算法和函数等. C++ Standard Library:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分. Standard Template Library:标准模板库 C POSIX library : POSIX系统的C标准库规范 ISO C++ Standards Committee :C++标准委员会 框架 C++通用框架和库

推荐!国外程序员整理的 C++ 资源大全

转载:http://blog.jobbole.com/78901/ 关于 C++ 框架.库和资源的一些汇总列表,由 fffaraz 发起和维护. 内容包括:标准库.Web应用框架.人工智能.数据库.图片处理.机器学习.日志.代码分析等. 标准库 C++标准库,包括了STL容器,算法和函数等. C++ Standard Library:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分. Standard Template Library:标准模板库 C POSIX lib