二分查找的实现和应用汇总(转载)

转载地址:http://www.cnblogs.com/ider/archive/2012/04/01/binary_search.html

二分查找法的实现和应用汇总

在学习算法的过程中,我们除了要了解某个算法的基本原理、实现方式,更重要的一个环节是利用big-O理论来分析算法的复杂度。在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度。

时间复杂度按优劣排差不多集中在:

O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n)

到目前位置,似乎我学到的算法中,时间复杂度是O(log n),好像就数二分查找法,其他的诸如排序算法都是 O(n log n)或者O(n2)。但是也正是因为有二分的 O(log n), 才让很多 O(n2)缩减到只要O(n log n)。

关于二分查找法

二分查找法主要是解决在“一堆数中找出指定的数”这类问题。

而想要应用二分查找法,这“一堆数”必须有一下特征:

  • 存储在数组中
  • 有序排列

所以如果是用链表存储的,就无法在其上应用二分查找法了。(曽在面试被问二分查找法可以什么数据结构上使用:数组?链表?)

至于是顺序递增排列还是递减排列,数组中是否存在相同的元素都不要紧。不过一般情况,我们还是希望并假设数组是递增排列,数组中的元素互不相同。

二分查找法的基本实现

二分查找法在算法家族大类中属于“分治法”,分治法基本都可以用递归来实现的,二分查找法的递归实现如下:

int bsearch(int array[], int low, int high, int target){    if (low > high) return -1;

    int mid = (low + high)/2;    if (array[mid]> target)        return    binarysearch(array, low, mid -1, target);    if (array[mid]< target)        return    binarysearch(array, mid+1, high, target);

    //if (midValue == target)        return mid;}

不过所有的递归都可以自行定义stack来解递归,所以二分查找法也可以不用递归实现,而且它的非递归实现甚至可以不用栈,因为二分的递归其实是尾递归,它不关心递归前的所有信息。

int bsearchWithoutRecursion(int array[], int low, int high, int target){    while(low <= high)    {        int mid = (low + high)/2;        if (array[mid] > target)            high = mid - 1;        else if (array[mid] < target)            low = mid + 1;        else //find the target            return mid;    }    //the array does not contain the target    return -1;}

只用小于比较(<)实现二分查找法

在前面的二分查找实现中,我们既用到了小于比较(<)也用到了大于比较(>),也可能还需要相等比较(==)。

而实际上我们只需要一个小于比较(<)就可以。因为错逻辑上讲a>b和b<a应该是有相当的逻辑值;而a==b则是等价于 !((a<b)||(b<a)),也就是说a既不小于b,也不大于b。

当然在程序的世界里, 这种关系逻辑其实并不是完全正确。另外,C++还允许对对象进行运算符的重载,因此开发人员完全可以随意设计和实现这些关系运算符的逻辑值。

不过在整型数据面前,这些关系运算符之间的逻辑关系还是成立的,而且在开发过程中,我们还是会遵循这些逻辑等价关系来重载关系运算符。

干嘛要搞得那么羞涩,只用一个关系运算符呢?因为这样可以为二分查找法写一个template,又能减少对目标对象的要求。模板会是这样的:

template <typename T, typename V>inline int BSearch(T& array, int low, int high, V& target){    while(!(high < low))    {        int mid = (low + high)/2;        if (target < array[mid])            high = mid - 1;        else if (array[mid] < target)            low = mid + 1;        else //find the target            return mid;    }    //the array does not contain the target    return -1; }

我们只需要求target的类型V有重载小于运算符就可以。而对于V的集合类型T,则需要有[]运算符的重载。当然其内部实现必须是O(1)的复杂度,否则也就失去了二分查找的效率。

用二分查找法找寻边界值

之前的都是在数组中找到一个数要与目标相等,如果不存在则返回-1。我们也可以用二分查找法找寻边界值,也就是说在有序数组中找到“正好大于(小于)目标数”的那个数。

用数学的表述方式就是:

在集合中找到一个大于(小于)目标数t的数x,使得集合中的任意数要么大于(小于)等于x,要么小于(大于)等于t。

举例来说:

给予数组和目标数

int array = {2, 3, 5, 7, 11, 13, 17};int target = 7;

那么上界值应该是11,因为它“刚刚好”大于7;下届值则是5,因为它“刚刚好”小于7。

用二分查找法找寻上届

//Find the fisrt element, whose value is larger than target, in a sorted array int BSearchUpperBound(int array[], int low, int high, int target){    //Array is empty or target is larger than any every element in array     if(low > high || target >= array[high]) return -1;

    int mid = (low + high) / 2;    while (high > low)    {        if (array[mid] > target)            high = mid;        else            low = mid + 1;

        mid = (low + high) / 2;    }

    return mid;}

与精确查找不同之处在于,精确查找分成三类:大于小于等于(目标数)。而界限查找则分成了两类:大于不大于

如果当前找到的数大于目标数时,它可能就是我们要找的数,所以需要保留这个索引,也因此if (array[mid] > target)时 high=mid; 而没有减1。

用二分查找法找寻下届

//Find the last element, whose value is less than target, in a sorted array int BSearchLowerBound(int array[], int low, int high, int target){    //Array is empty or target is less than any every element in array    if(high < low  || target <= array[low]) return -1;

    int mid = (low + high + 1) / 2; //make mid lean to large side    while (low < high)    {        if (array[mid] < target)            low = mid;        else            high = mid - 1;

        mid = (low + high + 1) / 2;    }

    return mid;}

下届寻找基本与上届相同,需要注意的是在取中间索引时,使用了向上取整。若同之前一样使用向下取整,那么当low == high-1,而array[low] 又小于 target时就会形成死循环。因为low无法往上爬超过high。

这两个实现都是找严格界限,也就是要大于或者小于。如果要找松散界限,也就是找到大于等于或者小于等于的值(即包含自身),只要对代码稍作修改就好了:

去掉判断数组边界的等号:

target >= array[high]改为 target > array[high]

在与中间值的比较中加上等号:

array[mid] > target改为array[mid] >= target

用二分查找法找寻区域

之前我们使用二分查找法时,都是基于数组中的元素各不相同。假如存在重复数据,而数组依然有序,那么我们还是可以用二分查找法判别目标数是否存在。不过,返回的index就只能是随机的重复数据中的某一个。

此时,我们会希望知道有多少个目标数存在。或者说我们希望数组的区域。

结合前面的界限查找,我们只要找到目标数的严格上届和严格下届,那么界限之间(不包括界限)的数据就是目标数的区域了。

//return type: pair<int, int>//the fisrt value indicate the begining of range,//the second value indicate the end of range.//If target is not find, (-1,-1) will be returnedpair<int, int> SearchRange(int A[], int n, int target) {    pair<int, int> r(-1, -1);    if (n <= 0) return r;

    int lower = BSearchLowerBound(A, 0, n-1, target);    lower = lower + 1; //move to next element

    if(A[lower] == target)        r.first = lower;    else //target is not in the array        return r;

    int upper = BSearchUpperBound(A, 0, n-1, target);    upper = upper < 0? (n-1):(upper - 1); //move to previous element

    //since in previous search we had check whether the target is    //in the array or not, we do not need to check it here again    r.second = upper;

    return r;}

它的时间复杂度是两次二分查找所用时间的和,也就是O(log n) + O(log n),最后还是O(log n)。

在轮转后的有序数组上应用二分查找法

之前我们说过二分法是要应用在有序的数组上,如果是无序的,那么比较和二分就没有意义了。

不过还有一种特殊的数组上也同样可以应用,那就是“轮转后的有序数组(Rotated Sorted Array)”。它是有序数组,取期中某一个数为轴,将其之前的所有数都轮转到数组的末尾所得。比如{7, 11, 13, 17, 2, 3, 5}就是一个轮转后的有序数组。非严格意义上讲,有序数组也属于轮转后的有序数组——我们取首元素作为轴进行轮转。

下边就是二分查找法在轮转后的有序数组上的实现(假设数组中不存在相同的元素)

int SearchInRotatedSortedArray(int array[], int low, int high, int target) {    while(low <= high)    {        int mid = (low + high) / 2;        if (target < array[mid])            if (array[mid] < array[high])//the higher part is sorted                high = mid - 1; //the target would only be in lower part            else //the lower part is sorted                if(target < array[low])//the target is less than all elements in low part                    low = mid + 1;                else                    high = mid - 1;

        else if(array[mid] < target)            if (array[low] < array[mid])// the lower part is sorted                low = mid + 1; //the target would only be in higher part            else //the higher part is sorted               if (array[high] < target)//the target is larger than all elements in higher part                    high = mid - 1;                else                    low = mid + 1;        else //if(array[mid] == target)            return mid;    }

    return -1;}

对比普通的二分查找法,为了确定目标数会落在二分后的那个部分,我们需要更多的判定条件。但是我们还是实现了O(log n)的目标。

二分查找法的缺陷

二分查找法的O(log n)让它成为十分高效的算法。不过它的缺陷却也是那么明显的。就在它的限定之上:

有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组

数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组变成低效的事情。

解决这些缺陷问题更好的方法应该是使用二叉查找树了,最好自然是自平衡二叉查找树了,自能高效的(O(n log n))构建有序元素集合,又能如同二分查找法一样快速(O(log n))的搜寻目标数。

时间: 2024-10-25 21:33:47

二分查找的实现和应用汇总(转载)的相关文章

(转载)你真的会二分查找吗?

原文地址 :http://blog.csdn.net/int64ago/article/details/7425727 看到这个标题无论你是处于怎样的心理进来看了,我觉得都是值得的.因为这个问题太简单,任何一个开始接触“真正”算法基本都是从二分查找开始的.至于二分查找都不知道是什么的可以先去找别的资料看下,再来看这篇文章.既然很简单,那么我们开始一起写一个吧,要求是对num[]={1,2,2,4,4,8,10}不减序列在区间[0,7)进行查找,当然我们得首先保证要查找的数e满足:num[0] <

STL之二分查找 (转载)

转载自:地址 Section I正确区分不同的查找算法count,find,binary_search,lower_bound,upper_bound,equal_range 本文是对Effective STL第45条的一个总结,阐述了各种查找算法的异同以及使用他们的时机. 首先可供查找的算法大致有count,find,binary_search,lower_bound,upper_bound,equal_range.带有判别式的如count_if,find_if或者binary_search的

二分查找(转载的别人的,看的不是太懂)

二分查找算法是在有序数组中用到的较为频繁的一种算法,在未接触二分查找算法时,最通用的一种做法是,对数组进行遍历,跟每个元素进行比较,其时间为O(n).但二分查找算法则更优,因为其查找时间为O(lgn),譬如数组{1, 2, 3, 4, 5, 6, 7, 8, 9},查找元素6,用二分查找的算法执行的话,其顺序为:    1.第一步查找中间元素,即5,由于5<6,则6必然在5之后的数组元素中,那么就在{6, 7, 8, 9}中查找,    2.寻找{6, 7, 8, 9}的中位数,为7,7>6,

【转载】二分查找

[本文转自]http://www.cnblogs.com/ider/archive/2012/04/01/binary_search.html 在学习算法的过程中,我们除了要了解某个算法的基本原理.实现方式,更重要的一个环节是利用big-O理论来分析算法的复杂度.在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度. 时间复杂度按优劣排差不多集中在: O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n) 到目前位置,似乎我学到的算法中,时间

基础排序、二分查找汇总

一.常见排序算法复杂度和稳定性 二.js代码实现和思路 (1)冒泡排序:从数组起始位置两两比较,前一个大于后一个就交换位置,第一轮比较后最大的那个数就排到了最后,循环比较数组长度-1次 function bubble (arr) { for (let j = 0; j < arr.length - 1; j++) { for (let i = 0; i < arr.length - 1 - j; i++) { if (arr[i] > arr[i + 1]) { [arr[i], arr

二分查找的两种实现方式(JAVA)

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表.重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功. 条件是:1.必须

【从零学习经典算法系列】分治策略实例——二分查找

1.二分查找算法简介 二分查找算法是一种在有序数组中查找某一特定元素的搜索算法.搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束:如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较.如果在某一步骤数组 为空,则代表找不到.这种搜索算法每一次比较都使搜索范围缩小一半.折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn). 二分查找的优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且

【算法拾遗】二分查找递归非递归实现

转载请注明出处:http://blog.csdn.net/ns_code/article/details/33747953 本篇博文没太多要说的,二分查找很简单,也是常见常考的查找算法,以下是递归非递归的实现. 非递归实现: /* 非递归实现,返回对应的序号 */ int BinarySearch(int *arr,int len,int key) { if(arr==NULL || len<1) return -1; int low = 0; int high = len-1; while(l

算法----二分查找算法

二分查找算法是在有序数组中用到的较为频繁的一种算法,在未接触二分查找算法时,最通用的一种做法是,对数组进行遍历,跟每个元素进行比较,其时间为O(n).但二分查找算法则更优,因为其查找时间为O(lgn),譬如数组{1, 2, 3, 4, 5, 6, 7, 8, 9},查找元素6,用二分查找的算法执行的话,其顺序为: 1.第一步查找中间元素,即5,由于5<6,则6必然在5之后的数组元素中,那么就在{6, 7, 8, 9}中查找, 2.寻找{6, 7, 8, 9}的中位数,为7,7>6,则6应该在7