GIS规划应用——基于哈夫模型的GIS服务区分析

1、  GIS服务区分析

  区位因素是商业分析中一个至关重要的因素,因此在商店选址时,例行的服务区分析十分重要。服务区是指顾客分布的主要区域,在其范围内该店的商品销售量或服务营业额超过其竞争对手。对于现有商店,通过服务区分析可以考察市场潜力,评价经营业绩;对于新店,通过分析服务区可以在竞争对手背后发掘商机,从而有利于确定最佳选址。此外,服务区分析还有助于企业确定广告覆盖的重点地区,揭示顾客较少的薄弱地段,提出企业扩张计划等等。

常见的划分服务区的方法有类比法、邻域法、重力法等几种。类比法是一种非地理方法,常用的是回归分析法,邻域法和重力法都是地理方法,可以借助GIS技术来实现,哈夫模型便是基于重力法的一种模型。

2、  哈夫模型

  哈夫模型是美国加利福尼亚大学的经济学者哈夫教授于 1963 年提出的关于预测城市区域内商圈规模的模型。它认为:从事购物行为的消费者对商店的心理认同是影响商店商圈大小的根本原因,商店商圈的规模与消费者是否选择该商店进行购物有关,通常而言,消费者更愿意去具有消费吸引力的商店购物,这些有吸引力的商场通常卖场面积大,商品可选择性强,商品品牌知名度高,促销活动具有更大的吸引力;而相反,如果前往该店的距离较远,交通系统不够通畅,消费者就会比较犹豫。因此,哈夫模型的核心论点便是:商店商圈规模大小与购物场所对消费者的吸引力成正比,与消费者去消费场所感觉的时间距离阻力成反比。商店购物场所各种因素的吸引力越大,则该商店的商圈规模也就大;消费者从出发地到该商业场所的时间越长,则该商店商圈的规模也就越小。哈夫模型的公式为:

  其中Pij为消费者选择商店j的概率, S为商店规模,d为距离,β>0是摩擦系数。

3、 应用案例——如何生成商店的服务区

  • 工具下载及修复

  在ArcGIS软件中没有内置的哈夫模型工具,但是可以在Esri的官方网站上下载(含工具及示例数据),地址是:http://arcscripts.esri.com/details.asp?dbid=15999该工具是由Python脚本编写的,下载后并不能直接运行在10版本的软件中,因为其Python代码是9.3版本,而在10版本以后用ArcPy站点包取代了之前的arcgisscripting模块,因此需要对代码进行几处修改:

(1)      添加import arcpy;

(2)      将gp.extent替换为arcpy.env.extent;

(3)      将extent.xmin等替换为extent.Xmin。

  • 应用案例

  消费者选择该商场的概率,进而生成服务区,并且可对新建商场进行预测。如下图所示:

图1   商场位置及人口普查数据

  将下载的工具添加到ArcToolbox,双击打开,按照下面的参数进行设置:

                               

图2工具参数设置

主要参数说明:

参数名称 说明
StoreLocations 输入商场的位置,至少要有两个要素。
StoreName Field 标识商场的唯一名称字段。
StoreAttractiveness Field 商场的吸引力字段,例如营业额,商场面积,商品数量等等
StudyArea 研究区域。
DistanceFriction Coefficient 摩擦系数,表示引力随距离衰减的程度,默认值为2。
GenerateMarket Areas 默认为NONE,则会在study area中产生随机点来表示消费者的位置信息,如果设置了下面的两个参数,可选择Origin。
OriginLocations 消费者的位置信息或人口普查数据(如街道数据)。
SalesPotential Field 预测消费潜力的字段,该字段将会乘以消费者选择某商场的概率,从而获得该商场的预测消费潜力。
PotentialStore Locations 需要预测的新商场的位置,在ArcMap中可以通过与地图交互添加新的点。

输出结果:该工具会生成各商场的服务区以及消费者选择每个商场的概率。

图3   各商场的服务区 

图4  消费者选择商场1的概率

GIS规划应用——基于哈夫模型的GIS服务区分析

时间: 2024-11-08 03:17:44

GIS规划应用——基于哈夫模型的GIS服务区分析的相关文章

炎热天气看书还是钓鱼?隐马尔科夫模型教你预测!

高温天气与行为概率 夏季是一年最热的时候,气温普遍偏高,一般把日最高气温达到35℃以上的天气叫作高温天气,但是一般情况下高温天气分为两类.  (1)干热型高温.一般是指气温较高.太阳辐射强而且空气的湿度较小的高温天气.  (2)闷热型高温.一般是指水汽丰富,但是气温相对而言并不算太高,给人感受闷热.  小张在不同类型下的高温天气下会有不同的行为,但是归纳起来为主要为散步.垂钓.看书三类,分别在干热型高温和闷热型高温下对应行为的概率见下表.  假设干热型高温和闷热型高温之间会进行相互转变,每天可能

基于隐马尔可夫模型的有监督词性标注

代码下载:基于隐马尔可夫模型的有监督词性标注 词性标注(Part-of-Speech tagging 或 POS tagging)是指对于句子中的每个词都指派一个合适的词性,也就是要确定每个词是名词.动词.形容词或其他词性的过程,又称词类标注或者简称标注.词性标注是自然语言处理中的一项基础任务,在语音识别.信息检索及自然语言处理的许多领域都发挥着重要的作用. 词性标注本质上是一个分类问题,对于句子中的每一个单词W,找到一个合适的词类类别T,也就是词性标记,不过词性标注考虑的是整体标记的好坏,既整

转:从头开始编写基于隐含马尔可夫模型HMM的中文分词器

http://blog.csdn.net/guixunlong/article/details/8925990 从头开始编写基于隐含马尔可夫模型HMM的中文分词器之一 - 资源篇 首先感谢52nlp的系列博文(http://www.52nlp.cn/),提供了自然语言处理的系列学习文章,让我学习到了如何实现一个基于隐含马尔可夫模型HMM的中文分词器. 在编写一个中文分词器前,第一步是需要找到一些基础的词典库等资源,用以训练模型参数,并进行后续的结果评测,这里直接转述52nlp介绍的"中文分词入门

HMM基本原理及其实现(隐马尔科夫模型)

HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态参数都离散的马尔可夫过程.HMM是在Markov链的基础上发展起来的,由于实际问题比Markov链模型所描述的更为复杂,观察到的时间并不是与状态一一对应的,而是通过一组概率分布相联系,这样的模型称为HMM.HMM是双重随机过程:其中之一是Markov链,这是基本随机过程,它描述状态的转移,是隐含的.

隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测

隐马尔科夫模型的来龙去脉

作为应用广泛的一种统计模型(尤其是在自然语言处理(NLP)中),隐马尔科夫模型是非常值得一说的,本文就隐马尔科夫模型的原理和应用介绍进行说明.由于隐马尔科夫模型有着很多不同的具体算法实现,本文暂时跳过这部分内容,算法部分会另外写成一篇博文. 马尔科夫链 在语言模型及其实现中,我曾经简单地提到过马尔科夫链,这里将会全面详细的说明. 其实马尔科夫链是一种离散的随即过程,可以将其看成是一种有限自动机,但是其状态之间的转移并不是依赖于外界的输入,而是依赖于每个状态之间的转移概率. 如下图所示: 上图中每

第五章:隐马尔可夫模型

隐马模型是一个不复杂但在NLP上最有效.快速的方法. 1.通信模型 自然语言和通信的联系是天然的,当自然语言处理问题回归到通信系统中的解码问题时,很多难题就迎刃而解了. 前面已经说了,我们把说话看作是一种编码方式,然后通过喉咙.空气传播,听到话的人的耳朵接收,再理解说的话,也就是语音识别.如果接收端是计算机,那么计算机完成的就是语音识别.我们要根据接收端的信号O1,O2,O3...来推测发送源的信号S1,S2.....我们只需从所有的源信息中找到最有可能的信号即可,也就是: 上式不易直接求出,我

隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在隐马尔科夫模型HMM(一)HMM模型中,我们讲到了HMM模型的基础知识和HMM的三个基本问题,本篇我们就关注于HMM第一个基本问题的解决方法,即已知模型和观测序列,求观测序列出现的概率. 1. 回顾HMM问题一:求观测序列的概率 首先我们回顾下HMM模型的问题一.这个

统计学习方法 李航---第10章 隐马尔可夫模型

第10章隐马尔可夫模型 隐马尔可夫模型(hidden Markov model, HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型. 10.1 隐马尔可夫模型的基本概念 定义10.1 (隐马尔可夫模型) 隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程.隐藏的马尔可夫链随机生成的状态的序列,称为状态序列(state sequence):每个状态生成一个观