boot代码init.s

bootloader启动代码

;=========================================
; NAME: 2440INIT.S
; DESC: C start up codes
;       Configure memory, ISR ,stacks
;    Initialize C-variables
; HISTORY:
; 2002.02.25:kwtark: ver 0.0
; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode
; 2003.03.14:DonGo: Modified for 2440.
;=========================================

    GET option.inc
    GET memcfg.inc
    GET 2440addr.inc

BIT_SELFREFRESH EQU    (1<<22)

;Pre-defined constants
USERMODE    EQU     0x10
FIQMODE     EQU     0x11
IRQMODE     EQU     0x12
SVCMODE     EQU     0x13
ABORTMODE   EQU     0x17
UNDEFMODE   EQU     0x1b
MODEMASK    EQU     0x1f
NOINT       EQU     0xc0

;The location of stacks
UserStack    EQU    (_STACK_BASEADDRESS-0x3800)    ;0x33ff4800 ~
SVCStack    EQU    (_STACK_BASEADDRESS-0x2800)    ;0x33ff5800 ~
UndefStack    EQU    (_STACK_BASEADDRESS-0x2400)    ;0x33ff5c00 ~
AbortStack    EQU    (_STACK_BASEADDRESS-0x2000)    ;0x33ff6000 ~
IRQStack    EQU    (_STACK_BASEADDRESS-0x1000)    ;0x33ff7000 ~
FIQStack    EQU    (_STACK_BASEADDRESS-0x0)    ;0x33ff8000 ~

;Check if tasm.exe(armasm -16 [email protected] 1.0) is used.
    GBLL    THUMBCODE
    [ {CONFIG} = 16
THUMBCODE SETL  {TRUE}
        CODE32
         |
THUMBCODE SETL  {FALSE}
    ]

         MACRO
    MOV_PC_LR
         [ THUMBCODE
        bx lr
         |
        BX lr
         ]
    MEND

         MACRO
    MOVEQ_PC_LR
         [ THUMBCODE
        bxeq lr
         |
        moveq pc,lr
         ]
    MEND

         MACRO
$HandlerLabel HANDLER $HandleLabel

$HandlerLabel
    sub    sp,sp,#4    ;decrement sp(to store jump address)
    stmfd    sp!,{r0}    ;PUSH the work register to stack(lr does t push because it return to original address)
    ldr     r0,=$HandleLabel;load the address of HandleXXX to r0
    ldr     r0,[r0]     ;load the contents(service routine start address) of HandleXXX
    str     r0,[sp,#4]      ;store the contents(ISR) of HandleXXX to stack
    ldmfd   sp!,{r0,pc}     ;POP the work register and pc(jump to ISR)
    MEND

    IMPORT  |Image$$ER_ROM1$$Base|    ; Base of ROM code
    IMPORT  |Image$$ER_ROM1$$Limit|  ; End of ROM code (=start of ROM data)
    IMPORT  |Image$$RW_RAM1$$Base|   ; Base of RAM to initialise
    IMPORT  |Image$$RW_RAM1$$ZI$$Base|   ; Base and limit of area
    IMPORT  |Image$$RW_RAM1$$Limit|  ; to zero initialise

    IMPORT    MMU_SetAsyncBusMode
    IMPORT    MMU_SetFastBusMode    

    IMPORT  Main    ; The main entry of mon program

    PRESERVE8

    AREA    RESET,CODE,READONLY

    ENTRY

    EXPORT    __ENTRY
__ENTRY
;========
;复位
;========
ResetEntry
    ;1)The code, which converts to Big-endian, should be in little endian code.
    ;2)The following little endian code will be compiled in Big-Endian mode.
    ;  The code byte order should be changed as the memory bus width.
    ;3)The pseudo instruction,DCD can t be used here because the linker generates error.
    ASSERT    :DEF:ENDIAN_CHANGE
    [ ENDIAN_CHANGE
        ASSERT  :DEF:ENTRY_BUS_WIDTH
        [ ENTRY_BUS_WIDTH=32
        b    ChangeBigEndian        ;DCD 0xea000007
        ]

        [ ENTRY_BUS_WIDTH=16
        andeq    r14,r7,r0,lsl #20   ;DCD 0x0007ea00
        ]

        [ ENTRY_BUS_WIDTH=8
        streq    r0,[r0,-r10,ror #1] ;DCD 0x070000ea
        ]
    |
        b    ResetHandler
    ]
    b    HandlerUndef    ;handler for Undefined mode
    b    HandlerSWI    ;handler for SWI interrupt
    b    HandlerPabort    ;handler for PAbort
    b    HandlerDabort    ;handler for DAbort
    b    .        ;reserved
    b    HandlerIRQ    ;handler for IRQ interrupt
    b    HandlerFIQ    ;handler for FIQ interrupt

;@0x20
    b    EnterPWDN    ; Must be @0x20.
ChangeBigEndian
;@0x24
    [ ENTRY_BUS_WIDTH=32
        DCD    0xee110f10    ;0xee110f10 => mrc p15,0,r0,c1,c0,0
        DCD    0xe3800080    ;0xe3800080 => orr r0,r0,#0x80;  //Big-endian
        DCD    0xee010f10    ;0xee010f10 => mcr p15,0,r0,c1,c0,0
    ]
    [ ENTRY_BUS_WIDTH=16
        DCD 0x0f10ee11
        DCD 0x0080e380
        DCD 0x0f10ee01
    ]
    [ ENTRY_BUS_WIDTH=8
        DCD 0x100f11ee
        DCD 0x800080e3
        DCD 0x100f01ee
    ]
    DCD 0xffffffff  ;swinv 0xffffff is similar with NOP and run well in both endian mode.
    DCD 0xffffffff
    DCD 0xffffffff
    DCD 0xffffffff
    DCD 0xffffffff
    b ResetHandler

HandlerFIQ      HANDLER HandleFIQ
HandlerIRQ      HANDLER HandleIRQ
HandlerUndef    HANDLER HandleUndef
HandlerSWI      HANDLER HandleSWI
HandlerDabort   HANDLER HandleDabort
HandlerPabort   HANDLER HandlePabort

IsrIRQ
    sub    sp,sp,#4       ;reserved for PC
    stmfd    sp!,{r8-r9}

    ldr    r9,=INTOFFSET
    ldr    r9,[r9]
    ldr    r8,=HandleEINT0
    add    r8,r8,r9,lsl #2  ;;//r8=r8+(r9*4)
    ldr    r8,[r8]
    str    r8,[sp,#8]
    ldmfd    sp!,{r8-r9,pc}

    LTORG

;=======
; ENTRY
;=======
ResetHandler
    ldr    r0,=WTCON       ;watch dog disable
    ldr    r1,=0x0
    str    r1,[r0]

    ldr    r0,=INTMSK
    ldr    r1,=0xffffffff  ;all interrupt disable
    str    r1,[r0]

    ldr    r0,=INTSUBMSK
    ldr    r1,=0x7fff        ;all sub interrupt disable
    str    r1,[r0]

    ;led显示
    [ {FALSE}
    ; rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);
    ; Led_Display
    ldr    r0,=GPFCON
    ldr    r1,=0x5500
    str    r1,[r0]
    ldr    r0,=GPFDAT
    ldr    r1,=0x10
    str    r1,[r0]
    ]

    ;To reduce PLL lock time, adjust the LOCKTIME register.
    ldr    r0,=LOCKTIME
    ldr    r1,=0xffffff
    str    r1,[r0]

    [ PLL_ON_START  ;TRUE
    ; Added for confirm clock divide. for 2440.
    ; Setting value Fclk:Hclk:Pclk
    ldr    r0,=CLKDIVN
    ldr    r1,=CLKDIV_VAL        ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6.
    str    r1,[r0]

    [ CLKDIV_VAL>1         ; means Fclk:Hclk is not 1:1.
    mrc p15,0,r0,c1,c0,0
    orr r0,r0,#0xc0000000;R1_nF:OR:R1_iA
    mcr p15,0,r0,c1,c0,0
    |
    mrc p15,0,r0,c1,c0,0
    bic r0,r0,#0xc0000000;R1_iA:OR:R1_nF
    mcr p15,0,r0,c1,c0,0
    ]

    ;Configure UPLL
    ldr    r0,=UPLLCON
    ldr    r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV)
    str    r1,[r0]
    nop    ; Caution: After UPLL setting, at least 7-clocks delay must be inserted for setting hardware be completed.
    nop
    nop
    nop
    nop
    nop
    nop
    ;Configure MPLL
    ldr    r0,=MPLLCON
    ldr    r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV)  ;Fin=16.9344MHz
    str    r1,[r0]
    ]

    ;Check if the boot is caused by the wake-up from SLEEP mode.
    ldr    r1,=GSTATUS2
    ldr    r0,[r1]
    tst    r0,#0x2
    ;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler.
    bne    WAKEUP_SLEEP

;    EXPORT StartPointAfterSleepWakeUp
;StartPointAfterSleepWakeUp

    ;Set memory control registers
     ;ldr    r0,=SMRDATA
     adrl    r0, SMRDATA
    ldr    r1,=BWSCON    ;BWSCON Address
    add    r2, r0, #52    ;End address of SMRDATA

0
    ldr    r3, [r0], #4
    str    r3, [r1], #4
    cmp    r2, r0
    bne    %B0

    ;delay
    mov    r0, #&1000
1
    subs    r0, r0, #1
    bne    %B1
    ;===

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;       When EINT0 is pressed,  Clear SDRAM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; check if EIN0 button is pressed

;    ldr    r0,=GPFCON
;    ldr    r1,=0x0
;    str    r1,[r0]
;    ldr    r0,=GPFUP
;    ldr    r1,=0xff
;    str    r1,[r0]
;
;    ldr    r1,=GPFDAT
;    ldr    r0,[r1]
;    bic    r0,r0,#(0x1e<<1)  ; bit clear
;    tst    r0,#0x1
;    bne %F1

; Clear SDRAM Start

;    ldr    r0,=GPFCON
;    ldr    r1,=0x55aa
;    str    r1,[r0]
;    ldr    r0,=GPFUP
;    ldr    r1,=0xff
;    str    r1,[r0]
;    ldr    r0,=GPFDAT
;    ldr    r1,=0x0
;    str    r1,[r0]    ;LED=****

;Clear SDRAM End

1

    ;Initialize stacks
    bl    InitStacks

;==========================================================
      ; Setup IRQ handler//建立中断表
    ldr    r0,=HandleIRQ       ;This routine is needed
    ldr    r1,=IsrIRQ      ;if there isn t ‘subs pc,lr,#4‘ at 0x18, 0x1c
    str    r1,[r0]
;===========================================================
;// 判断是从nor启动还是从nand启动
;===========================================================
    ;bl    Led_Test

    ldr    r0, =BWSCON
    ldr    r0, [r0]
    ands    r0, r0, #6        ;OM[1:0] != 0, NOR FLash boot
    bne    NORRoCopy        ;don t read nand flash
    adr    r0, ResetEntry        ;OM[1:0] == 0, NAND FLash boot // ADR 装载参照的地址=sub r0,pc,#0x268;
    cmp    r0, #0                ;if use Multi-ice,//JTAG调试时是直接下载到内存中运行,不需要再从nand拷贝
    bne    InitRamZero        ;don t read nand flash for boot
    ;nop

;===========================================================
;//将程序从nandflash拷贝到sdram
;===========================================================
nand_boot_beg
    bl    ClearSdram
    mov    r5, #NFCONF
    ;set timing value
    ldr    r0,    =(7<<12):OR:(7<<8):OR:(7<<4)
    str    r0,    [r5]
    ;enable control
    ldr    r0, =(0<<13):OR:(0<<12):OR:(0<<10):OR:(0<<9):OR:(0<<8):OR:(1<<6):OR:(1<<5):OR:(1<<4):OR:(1<<1):OR:(1<<0)
    str    r0, [r5, #4]

    bl    ReadNandID
    mov    r6, #0
    ldr    r0, =0xecF1
    cmp    r5,    r0
    beq    %F1
;    ldr    r0, =0xecda
;    cmp    r5, r0
    mov    r6, #1            ;Nandaddr(寻址周期 0:4  1:5)
1
    bl    ReadNandStatus

    mov    r8, #0
    ldr    r9, =ResetEntry
    mov r10,#32            ;+081010 feiling
2
    ands    r0, r8, #0x3f    ;如果是第一页,则检测坏块
    bne        %F3
    mov        r0, r8
    bl        CheckBadBlk
    cmp        r0, #0
    addne    r8, r8, #64    ;每块的页数  此处有BUG r8同时也做计数用。。
    addne    r10,r10,#64 ;+081010 feiling
    bne        %F4
3
    mov    r0, r8
    mov    r1, r9
    bl    ReadNandPage
    add    r9, r9, #2048    ;每页的字节数
    add    r8, r8, #1        ;页数+1
4
    cmp    r8, r10   ;要拷贝的页数 081010 pht:#32->r10
    bcc    %B2

    mov    r5, #NFCONF            ;DsNandFlash
    ldr    r0, [r5, #4]
    bic r0, r0, #1
    str    r0, [r5, #4]
    ldr    pc, =InitRamZero;此处跳转到内存空间 LDR 装载数据,寻址灵活。 但不改变PSR
                          ;要装载一个被存储的‘状态’并正确的恢复它 可以这样写:ldr r0, [base] 换行  moves pc, r0
;=============================================================================================
;若是从NAND启动,则拷贝工作已经在nand_boot_beg中完成,所以直接跳转到main
;若是从NOR启动,则将RO和RW部分都拷贝到内存,然后跳转到内存运行(也可在NOR中运行,只是速度稍慢)
;
;注:若在NOR中直接运行,需把RO/BASE改为0并定义RW/BASE 会跳过RO拷贝
;=============================================================================================
NORRoCopy            ;copy_proc_beg  by pht
    bl    ClearSdram

    adr    r0, ResetEntry        ;判断是否在ROM中运行,ROM即RO指定的地址 从NOR启动时ResetEntry为0
    ldr    r2, BaseOfROM        ;如果是则跳转到RwCopy 否则的话,将程序拷贝到ROM地址
    cmp    r0, r2
    beq    NORRwCopy
    ldr r3, TopOfROM        ;
0
    ldmia    r0!, {r4-r7}
    stmia    r2!, {r4-r7}
    cmp    r2, r3
    bcc    %B0

NORRwCopy
    ldr    r0, TopOfROM
    ldr r1, BaseOfROM
    sub r0, r0, r1            ;TopOfROM-BaseOfROM得到从0开始RW的偏移地址
    ldr    r2, BaseOfBSS        ;将RW部分的数据从ROM拷贝到RAM
    ldr    r3, BaseOfZero
0
    cmp    r2, r3
    ldrcc    r1, [r0], #4
    strcc    r1, [r2], #4
    bcc    %B0    

InitRamZero
    mov    r0,    #0
    ldr r2, BaseOfZero
    ldr    r3,    EndOfBSS
1
    cmp    r2,    r3                ;初始化Zero部分 不管从哪里启动,这部分都需要执行
    strcc    r0, [r2], #4
    bcc    %B1

    ldr    pc, =CEntry        ;goto compiler address

;    [ CLKDIV_VAL>1         ; means Fclk:Hclk is not 1:1.
;    bl    MMU_SetAsyncBusMode
;    |
;    bl MMU_SetFastBusMode    ; default value.
;    ]

CEntry
     bl    Main    ;Don t use main() because ......
     b    .

;=========================================================
ClearSdram
    mov r1,#0
    mov r2,#0
    mov r3,#0
    mov r4,#0
    mov r5,#0
    mov r6,#0
    mov r7,#0
    mov r8,#0

    ldr    r9,=0x00700000   ;for wince
    ldr    r0,=0x30000000
0
    stmia    r0!,{r1-r8}
    subs    r9,r9,#32
    bne    %B0
    BX lr

;===========================================================
;function initializing stacks
InitStacks
    ;Don t use DRAM,such as stmfd,ldmfd......
    ;SVCstack is initialized before
    ;Under toolkit ver 2.5, ‘msr cpsr,r1‘ can be used instead of ‘msr cpsr_cxsf,r1‘
    mrs    r0,cpsr
    bic    r0,r0,#MODEMASK
    orr    r1,r0,#UNDEFMODE:OR:NOINT
    msr    cpsr_cxsf,r1        ;UndefMode
    ldr    sp,=UndefStack        ; UndefStack=0x33FF_5C00

    orr    r1,r0,#ABORTMODE:OR:NOINT
    msr    cpsr_cxsf,r1        ;AbortMode
    ldr    sp,=AbortStack        ; AbortStack=0x33FF_6000

    orr    r1,r0,#IRQMODE:OR:NOINT
    msr    cpsr_cxsf,r1        ;IRQMode
    ldr    sp,=IRQStack        ; IRQStack=0x33FF_7000

    orr    r1,r0,#FIQMODE:OR:NOINT
    msr    cpsr_cxsf,r1        ;FIQMode
    ldr    sp,=FIQStack        ; FIQStack=0x33FF_8000

    bic    r0,r0,#MODEMASK:OR:NOINT
    orr    r1,r0,#SVCMODE
    msr    cpsr_cxsf,r1        ;SVCMode
    ldr    sp,=SVCStack        ; SVCStack=0x33FF_5800

    ;USER mode has not be initialized.

    BX lr
    ;The LR register won t be valid if the current mode is not SVC mode.

;===========================================================
ReadNandID
    mov      r7,#NFCONF
    ldr      r0,[r7,#4]        ;NFChipEn();
    bic      r0,r0,#2
    str      r0,[r7,#4]
    mov      r0,#0x90        ;WrNFCmd(RdIDCMD);
    strb     r0,[r7,#8]
    mov      r4,#0            ;WrNFAddr(0);
    strb     r4,[r7,#0xc]
1                            ;while(NFIsBusy());
    ldr      r0,[r7,#0x20]
    tst      r0,#1
    beq      %B1
    ldrb     r0,[r7,#0x10]    ;id  = RdNFDat()<<8;
    mov      r0,r0,lsl #8
    ldrb     r1,[r7,#0x10]    ;id |= RdNFDat();
    orr      r5,r1,r0
    ldr      r0,[r7,#4]        ;NFChipDs();
    orr      r0,r0,#2
    str      r0,[r7,#4]
    BX lr    

ReadNandStatus
    mov         r7,#NFCONF
    ldr      r0,[r7,#4]        ;NFChipEn();
    bic      r0,r0,#2
    str      r0,[r7,#4]
    mov      r0,#0x70        ;WrNFCmd(QUERYCMD);
    strb     r0,[r7,#8]
    ldrb     r1,[r7,#0x10]    ;r1 = RdNFDat();
    ldr      r0,[r7,#4]        ;NFChipDs();
    orr      r0,r0,#2
    str      r0,[r7,#4]
    BX lr

WaitNandBusy
    mov      r0,#0x70        ;WrNFCmd(QUERYCMD);
    mov      r1,#NFCONF
    strb     r0,[r1,#8]
1                            ;while(!(RdNFDat()&0x40));
    ldrb     r0,[r1,#0x10]
    tst      r0,#0x40
    beq         %B1
    mov      r0,#0            ;WrNFCmd(READCMD0);
    strb     r0,[r1,#8]
    BX lr

CheckBadBlk
    mov        r7, lr
    mov        r5, #NFCONF

    bic      r0,r0,#0x3f    ;addr &= ~0x3f;
    ldr      r1,[r5,#4]        ;NFChipEn()
    bic      r1,r1,#2
    str      r1,[r5,#4]

    mov      r1,#0x00        ;WrNFCmd(READCMD)
    strb     r1,[r5,#8]
    mov      r1, #0            ;2048&0xff
    strb     r1,[r5,#0xc]    ;WrNFAddr(2048&0xff);
    mov      r1, #8            ;(2048>>8)&0xf
    strb     r1,[r5,#0xc]

    strb     r0,[r5,#0xc]    ;WrNFAddr(addr)
    mov      r1,r0,lsr #8    ;WrNFAddr(addr>>8)
    strb     r1,[r5,#0xc]
    cmp      r6,#0            ;if(NandAddr)
    movne    r1,r0,lsr #16    ;WrNFAddr(addr>>16)
    strb     r1,[r5,#0xc]

    mov      r1,#0x30            ;WrNFCmd(0x30)
    strb     r1,[r5,#8]

;    cmp      r6,#0            ;if(NandAddr)
;    movne    r0,r0,lsr #16    ;WrNFAddr(addr>>16)
;    strneb   r0,[r5,#0xc]

;    bl        WaitNandBusy    ;WaitNFBusy()
    ;don t use WaitNandBusy, after WaitNandBusy will read part A!
    mov    r0, #100
1
    subs    r0, r0, #1
    bne    %B1
2
    ldr    r0, [r5, #0x20]
    tst    r0, #1
    beq    %B2    

    ldrb    r0, [r5,#0x10]    ;RdNFDat()
    sub        r0, r0, #0xff

;    mov      r1,#0            ;WrNFCmd(READCMD0)
;    strb     r1,[r5,#8]

    ldr      r1,[r5,#4]        ;NFChipDs()
    orr      r1,r1,#2
    str      r1,[r5,#4]

    BX  r7

ReadNandPage
    mov         r7,lr
    mov      r4,r1
    mov      r5,#NFCONF

    ldr      r1,[r5,#4]        ;NFChipEn()
    bic      r1,r1,#2
    str      r1,[r5,#4]    

    mov      r1,#0            ;WrNFCmd(READCMD0)
    strb     r1,[r5,#8]
    strb     r1,[r5,#0xc]    ;WrNFAddr(0)
    strb     r1,[r5,#0xc]    ;WrNFAddr(0)
    strb     r0,[r5,#0xc]    ;WrNFAddr(addr)
    mov      r1,r0,lsr #8    ;WrNFAddr(addr>>8)
    strb     r1,[r5,#0xc]
    cmp      r6,#0            ;if(NandAddr)
    movne    r1,r0,lsr #16    ;WrNFAddr(addr>>16)
    strb     r1,[r5,#0xc]    

    mov      r1,#0x30            ;WrNFCmd(0x30)
    strb     r1,[r5,#8]

    ldr      r0,[r5,#4]        ;InitEcc()
    orr      r0,r0,#0x10
    str      r0,[r5,#4]

    bl       WaitNandBusy    ;WaitNFBusy()

    mov      r0,#0            ;for(i=0; i<2048; i++)
1
    ldrb     r1,[r5,#0x10]    ;buf[i] = RdNFDat()
    strb     r1,[r4,r0]
    add      r0,r0,#1
    bic      r0,r0,#0x10000    ;?
    cmp      r0,#0x800
    bcc      %B1

    ldr      r0,[r5,#4]        ;NFChipDs()
    orr      r0,r0,#2
    str      r0,[r5,#4]

    BX r7

;--------------------LED test
    EXPORT    Led_Test
Led_Test
    mov    r0, #0x56000000
    mov    r1, #0x5500
    str    r1, [r0, #0x50]

0
    mov    r1, #0x50
    str    r1, [r0, #0x54]
    mov    r2, #0x100000
1
    subs    r2, r2, #1
    bne    %B1

    mov    r1, #0xa0
    str    r1, [r0, #0x54]
    mov    r2, #0x100000
2
    subs    r2, r2, #1
    bne    %B2
    b    %B0
    BX  lr

;===========================================================

    LTORG

;GCS0->SST39VF1601
;GCS1->16c550
;GCS2->IDE
;GCS3->CS8900
;GCS4->DM9000
;GCS5->CF Card
;GCS6->SDRAM
;GCS7->unused

SMRDATA DATA
; Memory configuration should be optimized for best performance
; The following parameter is not optimized.
; Memory access cycle parameter strategy
; 1) The memory settings is  safe parameters even at HCLK=75Mhz.
; 2) SDRAM refresh period is for HCLK<=75Mhz.

    DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28))
    DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC))   ;GCS0
    DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC))   ;GCS1
    DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC))   ;GCS2
    DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC))   ;GCS3
    DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC))   ;GCS4
    DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+(B5_PMC))   ;GCS5
    DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN))    ;GCS6
    DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN))    ;GCS7
    DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Tsrc<<18)+(Tchr<<16)+REFCNT)

    DCD 0x32        ;SCLK power saving mode, BANKSIZE 128M/128M
    ;DCD 0x02        ;SCLK power saving disable, BANKSIZE 128M/128M

    DCD 0x20        ;MRSR6 CL=2clk
    DCD 0x20        ;MRSR7 CL=2clk

BaseOfROM    DCD    |Image$$ER_ROM1$$Base|
TopOfROM    DCD    |Image$$ER_ROM1$$Limit|
BaseOfBSS    DCD    |Image$$RW_RAM1$$Base|
BaseOfZero    DCD    |Image$$RW_RAM1$$ZI$$Base|
EndOfBSS    DCD    |Image$$RW_RAM1$$Limit|

    ALIGN

;Function for entering power down mode
; 1. SDRAM should be in self-refresh mode.
; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh.
; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh.
; 4. The I-cache may have to be turned on.
; 5. The location of the following code may have not to be changed.

;void EnterPWDN(int CLKCON);
EnterPWDN
    mov r2,r0        ;r2=rCLKCON
    tst r0,#0x8        ;SLEEP mode?
    bne ENTER_SLEEP

ENTER_STOP
    ldr r0,=REFRESH
    ldr r3,[r0]        ;r3=rREFRESH
    mov r1, r3
    orr r1, r1, #BIT_SELFREFRESH
    str r1, [r0]        ;Enable SDRAM self-refresh

    mov r1,#16            ;wait until self-refresh is issued. may not be needed.
0    subs r1,r1,#1
    bne %B0

    ldr r0,=CLKCON        ;enter STOP mode.
    str r2,[r0]

    mov r1,#32
0    subs r1,r1,#1    ;1) wait until the STOP mode is in effect.
    bne %B0        ;2) Or wait here until the CPU&Peripherals will be turned-off
            ;   Entering SLEEP mode, only the reset by wake-up is available.

    ldr r0,=REFRESH ;exit from SDRAM self refresh mode.
    str r3,[r0]

    MOV_PC_LR

ENTER_SLEEP
    ;NOTE.
    ;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode.

    ldr r0,=REFRESH
    ldr r1,[r0]        ;r1=rREFRESH
    orr r1, r1, #BIT_SELFREFRESH
    str r1, [r0]        ;Enable SDRAM self-refresh

    mov r1,#16            ;Wait until self-refresh is issued,which may not be needed.
0    subs r1,r1,#1
    bne %B0

    ldr    r1,=MISCCR
    ldr    r0,[r1]
    orr    r0,r0,#(7<<17)  ;Set SCLK0=0, SCLK1=0, SCKE=0.
    str    r0,[r1]

    ldr r0,=CLKCON        ; Enter sleep mode
    str r2,[r0]

    b .            ;CPU will die here.

WAKEUP_SLEEP
    ;Release SCLKn after wake-up from the SLEEP mode.
    ldr    r1,=MISCCR
    ldr    r0,[r1]
    bic    r0,r0,#(7<<17)  ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE.
    str    r0,[r1]

    ;Set memory control registers
     ldr    r0,=SMRDATA
    ldr    r1,=BWSCON    ;BWSCON Address
    add    r2, r0, #52    ;End address of SMRDATA
0
    ldr    r3, [r0], #4
    str    r3, [r1], #4
    cmp    r2, r0
    bne    %B0

    mov r1,#256
0    subs r1,r1,#1    ;1) wait until the SelfRefresh is released.
    bne %B0

    ldr r1,=GSTATUS3     ;GSTATUS3 has the start address just after SLEEP wake-up
    ldr r0,[r1]

    BX r0

;=====================================================================
; Clock division test
; Assemble code, because VSYNC time is very short
;=====================================================================
    EXPORT CLKDIV124
    EXPORT CLKDIV144

CLKDIV124

    ldr     r0, = CLKDIVN
    ldr     r1, = 0x3        ; 0x3 = 1:2:4
    str     r1, [r0]
;    wait until clock is stable
    nop
    nop
    nop
    nop
    nop

    ldr     r0, = REFRESH
    ldr     r1, [r0]
    bic        r1, r1, #0xff
    bic        r1, r1, #(0x7<<8)
    orr        r1, r1, #0x470    ; REFCNT135
    str     r1, [r0]
    nop
    nop
    nop
    nop
    nop
    BX  lr

CLKDIV144
    ldr     r0, = CLKDIVN
    ldr     r1, = 0x4        ; 0x4 = 1:4:4
    str     r1, [r0]
;    wait until clock is stable
    nop
    nop
    nop
    nop
    nop

    ldr     r0, = REFRESH
    ldr     r1, [r0]
    bic        r1, r1, #0xff
    bic        r1, r1, #(0x7<<8)
    orr        r1, r1, #0x630    ; REFCNT675 - 1520
    str     r1, [r0]
    nop
    nop
    nop
    nop
    nop
    BX  lr

    ALIGN

    AREA RamData, DATA, READWRITE

    ^   _ISR_STARTADDRESS        ; _ISR_STARTADDRESS=0x33FF_FF00
HandleReset     #   4
HandleUndef     #   4
HandleSWI        #   4
HandlePabort    #   4
HandleDabort    #   4
HandleReserved  #   4
HandleIRQ        #   4
HandleFIQ        #   4

;Don t use the label ‘IntVectorTable‘,
;The value of IntVectorTable is different with the address you think it may be.
;IntVectorTable
;@0x33FF_FF20
HandleEINT0        #   4
HandleEINT1        #   4
HandleEINT2        #   4
HandleEINT3        #   4
HandleEINT4_7    #   4
HandleEINT8_23    #   4
HandleCAM        #   4        ; Added for 2440.
HandleBATFLT    #   4
HandleTICK        #   4
HandleWDT        #   4
HandleTIMER0     #   4
HandleTIMER1     #   4
HandleTIMER2     #   4
HandleTIMER3     #   4
HandleTIMER4     #   4
HandleUART2      #   4
;@0x33FF_FF60
HandleLCD         #   4
HandleDMA0        #   4
HandleDMA1        #   4
HandleDMA2        #   4
HandleDMA3        #   4
HandleMMC        #   4
HandleSPI0        #   4
HandleUART1        #   4
HandleNFCON        #   4        ; Added for 2440.
HandleUSBD        #   4
HandleUSBH        #   4
HandleIIC        #   4
HandleUART0     #   4
HandleSPI1         #   4
HandleRTC         #   4
HandleADC         #   4
;@0x33FF_FFA0
    END
时间: 2024-10-14 09:54:04

boot代码init.s的相关文章

nova boot代码流程分析(三):nova与neutron的交互(2)

继续<nova boot代码流程分析(三):nova与neutron的交互(1)>的分析. #/nova/virt/libvirt/driver.py:LibvirtDriver # NOTE(ilyaalekseyev): Implementation like in multinics # for xenapi(tr3buchet) def spawn(self, context, instance, image_meta, injected_files, admin_password,

nova boot代码流程分析(五):VM启动从neutron-dhcp-agent获取IP与MAC

1.   network和subnet创建代码流程 [[email protected] ~(keystone_user1)]# neutron net-create demo-net [[email protected] ~(keystone_user1)]# neutron subnet-create  demo-net 1.1.1.0/24 --name demo-subnet --gateway 1.1.1.1 --enable_dhcp true 这里,我们主要分析上面两个命令的代码流

nova boot代码流程分析(二):nova-scheduler主机选择

本篇文章将分析nova-scheduler服务在创建VM时如何进行主机的选择.完整来说,nova-scheduler主机选择的过程主要分为以下几个阶段: 1. nova.scheduler.rpcapi.SchedulerAPI发出RPC请求到nova.scheduler.manager.SchedulerManager. 2. 从SchedulerManager到调度器(类SchedulerDriver). 3. 从SchedulerDriver到Filters. 4. 从Filters到权重

nova boot代码流程分析(一):Claim机制

nova boot创建VM的流程大致为: 1. novaclient发送HTTP请求到nova-api(这里内部细节包括keystone对用户的验证及用户从keystone获取token和endpoints等信息,具体参考<keystone WSGI流程>). 2. nova-api通过rpc调用到nova-conductor. 3. nova-conductor调用rpc进入nova-scheduler进行compute节点的选择,nova-scheduler将compute节点选择的信息的

linux kernel x86 arch how to boot to init

arch/x86/boot/header.S   -->   _start   -->   calll   main arch/x86/boot/main.c   -->   main -- >   go_to_protected_mode arch/x86/boot/pm.c   -->   go_to_protected_mode   -->   protected_mode_jump arch/x86/boot/pmjump.S   -->   GLOBAL

ImageCraft下的AVR启动代码

以前经常想自己使用编译器编写MCU的C代码,编译器帮我们做了什么.编译器是如何分配变量和代码的.所以就闲着没事去看编译器的安装路径下有什么东东.工作中使用的是ICCAVR编译器和Atmel的atmega64.所以我倒腾的就是这款编译器和MCU~~~. 说实话ICCAVR编译器确实非常简捷方便,但是功能强大(当然了,我没用过其它的编译器o(╯□╰)o).对于它的基本使用再次不再赘述.在编译器环境中点击帮助菜单会弹出Show Library Source Code passwd,然后点击会弹出一个小

Android init源代码分析(2)init.rc解析

本文描述init.rc脚本解析以及执行过程,读完本章后,读者应能 (1) 了解init.rc解析过程 (2) 定制init.rc init.rc介绍 init.rc是一个文本文件,可认为它是Android系统启动脚本.init.rc文件中定义了环境变量配置.系统进程启动,分区挂载,属性配置等诸多内容.init.rc具有特殊的语法.init源码目录下的readme.txt中详细的描述了init启动脚本的语法规则,是试图定制init.rc的开发者的必读资料. Android启动脚本包括一组文件,包括

[深入理解Android卷一全文-第三章]深入理解init

因为<深入理解Android 卷一>和<深入理解Android卷二>不再出版,而知识的传播不应该因为纸质媒介的问题而中断,所以我将在CSDN博客中全文转发这两本书的全部内容. 第3章  深入理解init 本章主要内容 ·  深入分析init. 本章涉及的源代码文件名称及位置 以下是本章分析的源代码文件名称及其位置. ·  init.c system/core/init/init.c ·  parser.c system/core/init/parser.c ·  builtins.

Spring boot设置启动监听端口

一.直接看代码: 1 @Controller 2 @EnableAutoConfiguration 3 @ComponentScan 4 public class CallMain extends SpringBootServletInitializer implements EmbeddedServletContainerCustomizer { 5 private final static Logger logger = LoggerFactory.getLogger(CallMain.cl