bootloader启动代码
;========================================= ; NAME: 2440INIT.S ; DESC: C start up codes ; Configure memory, ISR ,stacks ; Initialize C-variables ; HISTORY: ; 2002.02.25:kwtark: ver 0.0 ; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode ; 2003.03.14:DonGo: Modified for 2440. ;========================================= GET option.inc GET memcfg.inc GET 2440addr.inc BIT_SELFREFRESH EQU (1<<22) ;Pre-defined constants USERMODE EQU 0x10 FIQMODE EQU 0x11 IRQMODE EQU 0x12 SVCMODE EQU 0x13 ABORTMODE EQU 0x17 UNDEFMODE EQU 0x1b MODEMASK EQU 0x1f NOINT EQU 0xc0 ;The location of stacks UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~ SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~ UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~ AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~ IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~ FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~ ;Check if tasm.exe(armasm -16 [email protected] 1.0) is used. GBLL THUMBCODE [ {CONFIG} = 16 THUMBCODE SETL {TRUE} CODE32 | THUMBCODE SETL {FALSE} ] MACRO MOV_PC_LR [ THUMBCODE bx lr | BX lr ] MEND MACRO MOVEQ_PC_LR [ THUMBCODE bxeq lr | moveq pc,lr ] MEND MACRO $HandlerLabel HANDLER $HandleLabel $HandlerLabel sub sp,sp,#4 ;decrement sp(to store jump address) stmfd sp!,{r0} ;PUSH the work register to stack(lr does t push because it return to original address) ldr r0,=$HandleLabel;load the address of HandleXXX to r0 ldr r0,[r0] ;load the contents(service routine start address) of HandleXXX str r0,[sp,#4] ;store the contents(ISR) of HandleXXX to stack ldmfd sp!,{r0,pc} ;POP the work register and pc(jump to ISR) MEND IMPORT |Image$$ER_ROM1$$Base| ; Base of ROM code IMPORT |Image$$ER_ROM1$$Limit| ; End of ROM code (=start of ROM data) IMPORT |Image$$RW_RAM1$$Base| ; Base of RAM to initialise IMPORT |Image$$RW_RAM1$$ZI$$Base| ; Base and limit of area IMPORT |Image$$RW_RAM1$$Limit| ; to zero initialise IMPORT MMU_SetAsyncBusMode IMPORT MMU_SetFastBusMode IMPORT Main ; The main entry of mon program PRESERVE8 AREA RESET,CODE,READONLY ENTRY EXPORT __ENTRY __ENTRY ;======== ;复位 ;======== ResetEntry ;1)The code, which converts to Big-endian, should be in little endian code. ;2)The following little endian code will be compiled in Big-Endian mode. ; The code byte order should be changed as the memory bus width. ;3)The pseudo instruction,DCD can t be used here because the linker generates error. ASSERT :DEF:ENDIAN_CHANGE [ ENDIAN_CHANGE ASSERT :DEF:ENTRY_BUS_WIDTH [ ENTRY_BUS_WIDTH=32 b ChangeBigEndian ;DCD 0xea000007 ] [ ENTRY_BUS_WIDTH=16 andeq r14,r7,r0,lsl #20 ;DCD 0x0007ea00 ] [ ENTRY_BUS_WIDTH=8 streq r0,[r0,-r10,ror #1] ;DCD 0x070000ea ] | b ResetHandler ] b HandlerUndef ;handler for Undefined mode b HandlerSWI ;handler for SWI interrupt b HandlerPabort ;handler for PAbort b HandlerDabort ;handler for DAbort b . ;reserved b HandlerIRQ ;handler for IRQ interrupt b HandlerFIQ ;handler for FIQ interrupt ;@0x20 b EnterPWDN ; Must be @0x20. ChangeBigEndian ;@0x24 [ ENTRY_BUS_WIDTH=32 DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0 DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80; //Big-endian DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0 ] [ ENTRY_BUS_WIDTH=16 DCD 0x0f10ee11 DCD 0x0080e380 DCD 0x0f10ee01 ] [ ENTRY_BUS_WIDTH=8 DCD 0x100f11ee DCD 0x800080e3 DCD 0x100f01ee ] DCD 0xffffffff ;swinv 0xffffff is similar with NOP and run well in both endian mode. DCD 0xffffffff DCD 0xffffffff DCD 0xffffffff DCD 0xffffffff b ResetHandler HandlerFIQ HANDLER HandleFIQ HandlerIRQ HANDLER HandleIRQ HandlerUndef HANDLER HandleUndef HandlerSWI HANDLER HandleSWI HandlerDabort HANDLER HandleDabort HandlerPabort HANDLER HandlePabort IsrIRQ sub sp,sp,#4 ;reserved for PC stmfd sp!,{r8-r9} ldr r9,=INTOFFSET ldr r9,[r9] ldr r8,=HandleEINT0 add r8,r8,r9,lsl #2 ;;//r8=r8+(r9*4) ldr r8,[r8] str r8,[sp,#8] ldmfd sp!,{r8-r9,pc} LTORG ;======= ; ENTRY ;======= ResetHandler ldr r0,=WTCON ;watch dog disable ldr r1,=0x0 str r1,[r0] ldr r0,=INTMSK ldr r1,=0xffffffff ;all interrupt disable str r1,[r0] ldr r0,=INTSUBMSK ldr r1,=0x7fff ;all sub interrupt disable str r1,[r0] ;led显示 [ {FALSE} ; rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4); ; Led_Display ldr r0,=GPFCON ldr r1,=0x5500 str r1,[r0] ldr r0,=GPFDAT ldr r1,=0x10 str r1,[r0] ] ;To reduce PLL lock time, adjust the LOCKTIME register. ldr r0,=LOCKTIME ldr r1,=0xffffff str r1,[r0] [ PLL_ON_START ;TRUE ; Added for confirm clock divide. for 2440. ; Setting value Fclk:Hclk:Pclk ldr r0,=CLKDIVN ldr r1,=CLKDIV_VAL ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6. str r1,[r0] [ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1. mrc p15,0,r0,c1,c0,0 orr r0,r0,#0xc0000000;R1_nF:OR:R1_iA mcr p15,0,r0,c1,c0,0 | mrc p15,0,r0,c1,c0,0 bic r0,r0,#0xc0000000;R1_iA:OR:R1_nF mcr p15,0,r0,c1,c0,0 ] ;Configure UPLL ldr r0,=UPLLCON ldr r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV) str r1,[r0] nop ; Caution: After UPLL setting, at least 7-clocks delay must be inserted for setting hardware be completed. nop nop nop nop nop nop ;Configure MPLL ldr r0,=MPLLCON ldr r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV) ;Fin=16.9344MHz str r1,[r0] ] ;Check if the boot is caused by the wake-up from SLEEP mode. ldr r1,=GSTATUS2 ldr r0,[r1] tst r0,#0x2 ;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler. bne WAKEUP_SLEEP ; EXPORT StartPointAfterSleepWakeUp ;StartPointAfterSleepWakeUp ;Set memory control registers ;ldr r0,=SMRDATA adrl r0, SMRDATA ldr r1,=BWSCON ;BWSCON Address add r2, r0, #52 ;End address of SMRDATA 0 ldr r3, [r0], #4 str r3, [r1], #4 cmp r2, r0 bne %B0 ;delay mov r0, #&1000 1 subs r0, r0, #1 bne %B1 ;=== ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;; When EINT0 is pressed, Clear SDRAM ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; check if EIN0 button is pressed ; ldr r0,=GPFCON ; ldr r1,=0x0 ; str r1,[r0] ; ldr r0,=GPFUP ; ldr r1,=0xff ; str r1,[r0] ; ; ldr r1,=GPFDAT ; ldr r0,[r1] ; bic r0,r0,#(0x1e<<1) ; bit clear ; tst r0,#0x1 ; bne %F1 ; Clear SDRAM Start ; ldr r0,=GPFCON ; ldr r1,=0x55aa ; str r1,[r0] ; ldr r0,=GPFUP ; ldr r1,=0xff ; str r1,[r0] ; ldr r0,=GPFDAT ; ldr r1,=0x0 ; str r1,[r0] ;LED=**** ;Clear SDRAM End 1 ;Initialize stacks bl InitStacks ;========================================================== ; Setup IRQ handler//建立中断表 ldr r0,=HandleIRQ ;This routine is needed ldr r1,=IsrIRQ ;if there isn t ‘subs pc,lr,#4‘ at 0x18, 0x1c str r1,[r0] ;=========================================================== ;// 判断是从nor启动还是从nand启动 ;=========================================================== ;bl Led_Test ldr r0, =BWSCON ldr r0, [r0] ands r0, r0, #6 ;OM[1:0] != 0, NOR FLash boot bne NORRoCopy ;don t read nand flash adr r0, ResetEntry ;OM[1:0] == 0, NAND FLash boot // ADR 装载参照的地址=sub r0,pc,#0x268; cmp r0, #0 ;if use Multi-ice,//JTAG调试时是直接下载到内存中运行,不需要再从nand拷贝 bne InitRamZero ;don t read nand flash for boot ;nop ;=========================================================== ;//将程序从nandflash拷贝到sdram ;=========================================================== nand_boot_beg bl ClearSdram mov r5, #NFCONF ;set timing value ldr r0, =(7<<12):OR:(7<<8):OR:(7<<4) str r0, [r5] ;enable control ldr r0, =(0<<13):OR:(0<<12):OR:(0<<10):OR:(0<<9):OR:(0<<8):OR:(1<<6):OR:(1<<5):OR:(1<<4):OR:(1<<1):OR:(1<<0) str r0, [r5, #4] bl ReadNandID mov r6, #0 ldr r0, =0xecF1 cmp r5, r0 beq %F1 ; ldr r0, =0xecda ; cmp r5, r0 mov r6, #1 ;Nandaddr(寻址周期 0:4 1:5) 1 bl ReadNandStatus mov r8, #0 ldr r9, =ResetEntry mov r10,#32 ;+081010 feiling 2 ands r0, r8, #0x3f ;如果是第一页,则检测坏块 bne %F3 mov r0, r8 bl CheckBadBlk cmp r0, #0 addne r8, r8, #64 ;每块的页数 此处有BUG r8同时也做计数用。。 addne r10,r10,#64 ;+081010 feiling bne %F4 3 mov r0, r8 mov r1, r9 bl ReadNandPage add r9, r9, #2048 ;每页的字节数 add r8, r8, #1 ;页数+1 4 cmp r8, r10 ;要拷贝的页数 081010 pht:#32->r10 bcc %B2 mov r5, #NFCONF ;DsNandFlash ldr r0, [r5, #4] bic r0, r0, #1 str r0, [r5, #4] ldr pc, =InitRamZero;此处跳转到内存空间 LDR 装载数据,寻址灵活。 但不改变PSR ;要装载一个被存储的‘状态’并正确的恢复它 可以这样写:ldr r0, [base] 换行 moves pc, r0 ;============================================================================================= ;若是从NAND启动,则拷贝工作已经在nand_boot_beg中完成,所以直接跳转到main ;若是从NOR启动,则将RO和RW部分都拷贝到内存,然后跳转到内存运行(也可在NOR中运行,只是速度稍慢) ; ;注:若在NOR中直接运行,需把RO/BASE改为0并定义RW/BASE 会跳过RO拷贝 ;============================================================================================= NORRoCopy ;copy_proc_beg by pht bl ClearSdram adr r0, ResetEntry ;判断是否在ROM中运行,ROM即RO指定的地址 从NOR启动时ResetEntry为0 ldr r2, BaseOfROM ;如果是则跳转到RwCopy 否则的话,将程序拷贝到ROM地址 cmp r0, r2 beq NORRwCopy ldr r3, TopOfROM ; 0 ldmia r0!, {r4-r7} stmia r2!, {r4-r7} cmp r2, r3 bcc %B0 NORRwCopy ldr r0, TopOfROM ldr r1, BaseOfROM sub r0, r0, r1 ;TopOfROM-BaseOfROM得到从0开始RW的偏移地址 ldr r2, BaseOfBSS ;将RW部分的数据从ROM拷贝到RAM ldr r3, BaseOfZero 0 cmp r2, r3 ldrcc r1, [r0], #4 strcc r1, [r2], #4 bcc %B0 InitRamZero mov r0, #0 ldr r2, BaseOfZero ldr r3, EndOfBSS 1 cmp r2, r3 ;初始化Zero部分 不管从哪里启动,这部分都需要执行 strcc r0, [r2], #4 bcc %B1 ldr pc, =CEntry ;goto compiler address ; [ CLKDIV_VAL>1 ; means Fclk:Hclk is not 1:1. ; bl MMU_SetAsyncBusMode ; | ; bl MMU_SetFastBusMode ; default value. ; ] CEntry bl Main ;Don t use main() because ...... b . ;========================================================= ClearSdram mov r1,#0 mov r2,#0 mov r3,#0 mov r4,#0 mov r5,#0 mov r6,#0 mov r7,#0 mov r8,#0 ldr r9,=0x00700000 ;for wince ldr r0,=0x30000000 0 stmia r0!,{r1-r8} subs r9,r9,#32 bne %B0 BX lr ;=========================================================== ;function initializing stacks InitStacks ;Don t use DRAM,such as stmfd,ldmfd...... ;SVCstack is initialized before ;Under toolkit ver 2.5, ‘msr cpsr,r1‘ can be used instead of ‘msr cpsr_cxsf,r1‘ mrs r0,cpsr bic r0,r0,#MODEMASK orr r1,r0,#UNDEFMODE:OR:NOINT msr cpsr_cxsf,r1 ;UndefMode ldr sp,=UndefStack ; UndefStack=0x33FF_5C00 orr r1,r0,#ABORTMODE:OR:NOINT msr cpsr_cxsf,r1 ;AbortMode ldr sp,=AbortStack ; AbortStack=0x33FF_6000 orr r1,r0,#IRQMODE:OR:NOINT msr cpsr_cxsf,r1 ;IRQMode ldr sp,=IRQStack ; IRQStack=0x33FF_7000 orr r1,r0,#FIQMODE:OR:NOINT msr cpsr_cxsf,r1 ;FIQMode ldr sp,=FIQStack ; FIQStack=0x33FF_8000 bic r0,r0,#MODEMASK:OR:NOINT orr r1,r0,#SVCMODE msr cpsr_cxsf,r1 ;SVCMode ldr sp,=SVCStack ; SVCStack=0x33FF_5800 ;USER mode has not be initialized. BX lr ;The LR register won t be valid if the current mode is not SVC mode. ;=========================================================== ReadNandID mov r7,#NFCONF ldr r0,[r7,#4] ;NFChipEn(); bic r0,r0,#2 str r0,[r7,#4] mov r0,#0x90 ;WrNFCmd(RdIDCMD); strb r0,[r7,#8] mov r4,#0 ;WrNFAddr(0); strb r4,[r7,#0xc] 1 ;while(NFIsBusy()); ldr r0,[r7,#0x20] tst r0,#1 beq %B1 ldrb r0,[r7,#0x10] ;id = RdNFDat()<<8; mov r0,r0,lsl #8 ldrb r1,[r7,#0x10] ;id |= RdNFDat(); orr r5,r1,r0 ldr r0,[r7,#4] ;NFChipDs(); orr r0,r0,#2 str r0,[r7,#4] BX lr ReadNandStatus mov r7,#NFCONF ldr r0,[r7,#4] ;NFChipEn(); bic r0,r0,#2 str r0,[r7,#4] mov r0,#0x70 ;WrNFCmd(QUERYCMD); strb r0,[r7,#8] ldrb r1,[r7,#0x10] ;r1 = RdNFDat(); ldr r0,[r7,#4] ;NFChipDs(); orr r0,r0,#2 str r0,[r7,#4] BX lr WaitNandBusy mov r0,#0x70 ;WrNFCmd(QUERYCMD); mov r1,#NFCONF strb r0,[r1,#8] 1 ;while(!(RdNFDat()&0x40)); ldrb r0,[r1,#0x10] tst r0,#0x40 beq %B1 mov r0,#0 ;WrNFCmd(READCMD0); strb r0,[r1,#8] BX lr CheckBadBlk mov r7, lr mov r5, #NFCONF bic r0,r0,#0x3f ;addr &= ~0x3f; ldr r1,[r5,#4] ;NFChipEn() bic r1,r1,#2 str r1,[r5,#4] mov r1,#0x00 ;WrNFCmd(READCMD) strb r1,[r5,#8] mov r1, #0 ;2048&0xff strb r1,[r5,#0xc] ;WrNFAddr(2048&0xff); mov r1, #8 ;(2048>>8)&0xf strb r1,[r5,#0xc] strb r0,[r5,#0xc] ;WrNFAddr(addr) mov r1,r0,lsr #8 ;WrNFAddr(addr>>8) strb r1,[r5,#0xc] cmp r6,#0 ;if(NandAddr) movne r1,r0,lsr #16 ;WrNFAddr(addr>>16) strb r1,[r5,#0xc] mov r1,#0x30 ;WrNFCmd(0x30) strb r1,[r5,#8] ; cmp r6,#0 ;if(NandAddr) ; movne r0,r0,lsr #16 ;WrNFAddr(addr>>16) ; strneb r0,[r5,#0xc] ; bl WaitNandBusy ;WaitNFBusy() ;don t use WaitNandBusy, after WaitNandBusy will read part A! mov r0, #100 1 subs r0, r0, #1 bne %B1 2 ldr r0, [r5, #0x20] tst r0, #1 beq %B2 ldrb r0, [r5,#0x10] ;RdNFDat() sub r0, r0, #0xff ; mov r1,#0 ;WrNFCmd(READCMD0) ; strb r1,[r5,#8] ldr r1,[r5,#4] ;NFChipDs() orr r1,r1,#2 str r1,[r5,#4] BX r7 ReadNandPage mov r7,lr mov r4,r1 mov r5,#NFCONF ldr r1,[r5,#4] ;NFChipEn() bic r1,r1,#2 str r1,[r5,#4] mov r1,#0 ;WrNFCmd(READCMD0) strb r1,[r5,#8] strb r1,[r5,#0xc] ;WrNFAddr(0) strb r1,[r5,#0xc] ;WrNFAddr(0) strb r0,[r5,#0xc] ;WrNFAddr(addr) mov r1,r0,lsr #8 ;WrNFAddr(addr>>8) strb r1,[r5,#0xc] cmp r6,#0 ;if(NandAddr) movne r1,r0,lsr #16 ;WrNFAddr(addr>>16) strb r1,[r5,#0xc] mov r1,#0x30 ;WrNFCmd(0x30) strb r1,[r5,#8] ldr r0,[r5,#4] ;InitEcc() orr r0,r0,#0x10 str r0,[r5,#4] bl WaitNandBusy ;WaitNFBusy() mov r0,#0 ;for(i=0; i<2048; i++) 1 ldrb r1,[r5,#0x10] ;buf[i] = RdNFDat() strb r1,[r4,r0] add r0,r0,#1 bic r0,r0,#0x10000 ;? cmp r0,#0x800 bcc %B1 ldr r0,[r5,#4] ;NFChipDs() orr r0,r0,#2 str r0,[r5,#4] BX r7 ;--------------------LED test EXPORT Led_Test Led_Test mov r0, #0x56000000 mov r1, #0x5500 str r1, [r0, #0x50] 0 mov r1, #0x50 str r1, [r0, #0x54] mov r2, #0x100000 1 subs r2, r2, #1 bne %B1 mov r1, #0xa0 str r1, [r0, #0x54] mov r2, #0x100000 2 subs r2, r2, #1 bne %B2 b %B0 BX lr ;=========================================================== LTORG ;GCS0->SST39VF1601 ;GCS1->16c550 ;GCS2->IDE ;GCS3->CS8900 ;GCS4->DM9000 ;GCS5->CF Card ;GCS6->SDRAM ;GCS7->unused SMRDATA DATA ; Memory configuration should be optimized for best performance ; The following parameter is not optimized. ; Memory access cycle parameter strategy ; 1) The memory settings is safe parameters even at HCLK=75Mhz. ; 2) SDRAM refresh period is for HCLK<=75Mhz. DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28)) DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC)) ;GCS0 DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC)) ;GCS1 DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC)) ;GCS2 DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC)) ;GCS3 DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC)) ;GCS4 DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+(B5_PMC)) ;GCS5 DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN)) ;GCS6 DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN)) ;GCS7 DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Tsrc<<18)+(Tchr<<16)+REFCNT) DCD 0x32 ;SCLK power saving mode, BANKSIZE 128M/128M ;DCD 0x02 ;SCLK power saving disable, BANKSIZE 128M/128M DCD 0x20 ;MRSR6 CL=2clk DCD 0x20 ;MRSR7 CL=2clk BaseOfROM DCD |Image$$ER_ROM1$$Base| TopOfROM DCD |Image$$ER_ROM1$$Limit| BaseOfBSS DCD |Image$$RW_RAM1$$Base| BaseOfZero DCD |Image$$RW_RAM1$$ZI$$Base| EndOfBSS DCD |Image$$RW_RAM1$$Limit| ALIGN ;Function for entering power down mode ; 1. SDRAM should be in self-refresh mode. ; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh. ; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh. ; 4. The I-cache may have to be turned on. ; 5. The location of the following code may have not to be changed. ;void EnterPWDN(int CLKCON); EnterPWDN mov r2,r0 ;r2=rCLKCON tst r0,#0x8 ;SLEEP mode? bne ENTER_SLEEP ENTER_STOP ldr r0,=REFRESH ldr r3,[r0] ;r3=rREFRESH mov r1, r3 orr r1, r1, #BIT_SELFREFRESH str r1, [r0] ;Enable SDRAM self-refresh mov r1,#16 ;wait until self-refresh is issued. may not be needed. 0 subs r1,r1,#1 bne %B0 ldr r0,=CLKCON ;enter STOP mode. str r2,[r0] mov r1,#32 0 subs r1,r1,#1 ;1) wait until the STOP mode is in effect. bne %B0 ;2) Or wait here until the CPU&Peripherals will be turned-off ; Entering SLEEP mode, only the reset by wake-up is available. ldr r0,=REFRESH ;exit from SDRAM self refresh mode. str r3,[r0] MOV_PC_LR ENTER_SLEEP ;NOTE. ;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode. ldr r0,=REFRESH ldr r1,[r0] ;r1=rREFRESH orr r1, r1, #BIT_SELFREFRESH str r1, [r0] ;Enable SDRAM self-refresh mov r1,#16 ;Wait until self-refresh is issued,which may not be needed. 0 subs r1,r1,#1 bne %B0 ldr r1,=MISCCR ldr r0,[r1] orr r0,r0,#(7<<17) ;Set SCLK0=0, SCLK1=0, SCKE=0. str r0,[r1] ldr r0,=CLKCON ; Enter sleep mode str r2,[r0] b . ;CPU will die here. WAKEUP_SLEEP ;Release SCLKn after wake-up from the SLEEP mode. ldr r1,=MISCCR ldr r0,[r1] bic r0,r0,#(7<<17) ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE. str r0,[r1] ;Set memory control registers ldr r0,=SMRDATA ldr r1,=BWSCON ;BWSCON Address add r2, r0, #52 ;End address of SMRDATA 0 ldr r3, [r0], #4 str r3, [r1], #4 cmp r2, r0 bne %B0 mov r1,#256 0 subs r1,r1,#1 ;1) wait until the SelfRefresh is released. bne %B0 ldr r1,=GSTATUS3 ;GSTATUS3 has the start address just after SLEEP wake-up ldr r0,[r1] BX r0 ;===================================================================== ; Clock division test ; Assemble code, because VSYNC time is very short ;===================================================================== EXPORT CLKDIV124 EXPORT CLKDIV144 CLKDIV124 ldr r0, = CLKDIVN ldr r1, = 0x3 ; 0x3 = 1:2:4 str r1, [r0] ; wait until clock is stable nop nop nop nop nop ldr r0, = REFRESH ldr r1, [r0] bic r1, r1, #0xff bic r1, r1, #(0x7<<8) orr r1, r1, #0x470 ; REFCNT135 str r1, [r0] nop nop nop nop nop BX lr CLKDIV144 ldr r0, = CLKDIVN ldr r1, = 0x4 ; 0x4 = 1:4:4 str r1, [r0] ; wait until clock is stable nop nop nop nop nop ldr r0, = REFRESH ldr r1, [r0] bic r1, r1, #0xff bic r1, r1, #(0x7<<8) orr r1, r1, #0x630 ; REFCNT675 - 1520 str r1, [r0] nop nop nop nop nop BX lr ALIGN AREA RamData, DATA, READWRITE ^ _ISR_STARTADDRESS ; _ISR_STARTADDRESS=0x33FF_FF00 HandleReset # 4 HandleUndef # 4 HandleSWI # 4 HandlePabort # 4 HandleDabort # 4 HandleReserved # 4 HandleIRQ # 4 HandleFIQ # 4 ;Don t use the label ‘IntVectorTable‘, ;The value of IntVectorTable is different with the address you think it may be. ;IntVectorTable ;@0x33FF_FF20 HandleEINT0 # 4 HandleEINT1 # 4 HandleEINT2 # 4 HandleEINT3 # 4 HandleEINT4_7 # 4 HandleEINT8_23 # 4 HandleCAM # 4 ; Added for 2440. HandleBATFLT # 4 HandleTICK # 4 HandleWDT # 4 HandleTIMER0 # 4 HandleTIMER1 # 4 HandleTIMER2 # 4 HandleTIMER3 # 4 HandleTIMER4 # 4 HandleUART2 # 4 ;@0x33FF_FF60 HandleLCD # 4 HandleDMA0 # 4 HandleDMA1 # 4 HandleDMA2 # 4 HandleDMA3 # 4 HandleMMC # 4 HandleSPI0 # 4 HandleUART1 # 4 HandleNFCON # 4 ; Added for 2440. HandleUSBD # 4 HandleUSBH # 4 HandleIIC # 4 HandleUART0 # 4 HandleSPI1 # 4 HandleRTC # 4 HandleADC # 4 ;@0x33FF_FFA0 END
时间: 2024-10-14 09:54:04