Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
求满足这个要求的数的和
#include <iostream> #include<map> using namespace std; int count(int a) { int res = 0; for (int i = 1; i < a; i++) { if (a%i == 0) res += i; } return res; } int main() { map<int, int>mp; for (int i = 1; i < 10000; i++) { mp[i] = count(i); } int res = 0; for (int i = 1; i < 10000; i++) { if (mp[i] != i&&mp[i] < 10000 && mp[mp[i]] == i) { //cout << i << " " << mp[i] << endl; res+=i; } } cout << res << endl; system("pause"); return 0; }
时间: 2024-10-08 14:07:51