Hive练习

一、基础DDL练习

SHOW DATABASES;

CREATE DATABASE IF NOT EXISTS db1 COMMENT ‘Our database db1‘;

SHOW DATABASES;

DESCRIBE DATABASE db1;

CREATE TABLE db1.table1 (word STRING, count INT);

SHOW TABLES in db1;

DESCRIBE db1.table1;

USE db1;

SHOW TABLES;

SELECT * FROM db1.table1;

DROP TABLE table1;

DROP DATABASE db1;

USE default;

二、基础DML语句

创建表
create table if not exists user_dimension (
 uid STRING,
 name STRING,
 gender STRING,
 birth DATE,
 province STRING
)ROW FORMAT DELIMITED //按行切分的意思
 FIELDS TERMINATED BY ‘,‘  //按逗号分隔的
查看表信息
describe user_dimension;

show create table user_dimension;

查看所有表
show tables;

载入本地数据
load data local inpath ‘/home/orco/tempdata/user.data‘ overwrite into table user_dimension;

载入HDFS上的数据
load data inpath ‘/user/orco/practice_1/user.data‘ overwrite into table user_dimension;

验证
select * from user_dimension;

查看hive在hdfs上的存储目录
hadoop fs -ls /warehouse/
hadoop fs -ls /warehouse/user_dimension

三、复杂数据类型

时间: 2024-10-20 12:15:09

Hive练习的相关文章

学习Hive和Impala必看经典解析

Hive和Impala作为数据查询工具,它们是怎样来查询数据的呢?与Impala和Hive进行交互,我们有哪些工具可以使用呢? 我们首先明确Hive和Impala分别提供了对应查询的接口: (1)命令行shell: 1. Impala:impala shell 2. Hive:beeline(早期hive的命令行版本是hive shell,现在基本不使用) (2)Hue Web UI: 1.Hue里面提供了 Hive查询编辑器 2.Hue里面提供了Impala查询编辑器 3.Hue里面提供了元数

Hive报错 Failed with exception java.io.IOException:java.lang.IllegalArgumentException: java.net.URISyntaxException: Relative path in absolute URI: ${system:user.name%7D

报错信息如下 Failed with exception java.io.IOException:java.lang.IllegalArgumentException: java.net.URISyntaxException: Relative path in absolute URI: ${system:user.name%7D 解决方法: 编辑 hive-site.xml 文件,添加下边的属性 <property> <name>system:java.io.tmpdir<

Spark 整合hive 实现数据的读取输出

实验环境: linux centOS 6.7 vmware虚拟机 spark-1.5.1-bin-hadoop-2.1.0 apache-hive-1.2.1 eclipse 或IntelJIDea 本次使用eclipse. 代码: import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import o

Hive JDBC——深入浅出学Hive

第一部分:搭建Hive JDBC开发环境 搭建:Steps ?新建工程hiveTest ?导入Hive依赖的包 ?Hive  命令行启动Thrift服务 ?hive --service hiveserver & 第二部分:基本操作对象的介绍 Connection ?说明:与Hive连接的Connection对象 ?Hive 的连接 ?jdbc:hive://IP:10000/default" ?获取Connection的方法 ?DriverManager.getConnection(&q

Hadoop Hive基础sql语法

Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.而mapreduce开发人员可以把己写的mapper 和reducer 作为插件来支持

hive安装以及hive on spark

spark由于一些链式的操作,spark 2.1目前只支持hive1.2.1 hive 1.2安装 到http://mirror.bit.edu.cn/apache/hive/hive-1.2.1/ 网址下载hive1.2.1的部署包 2.配置系统环境变量/etc/profile export HIVE_HOME=/opt/hive-1.2.1 export PATH=$PATH:$HIVE_HOME/bin source /etc/profile 使刚刚的配置生效 3. 解压 tar -xvf

Hive UDTF开发指南

在这篇文章中,我们将深入了解用户定义表函数(UDTF),该函数的实现是通过继承org.apache.Hadoop.hive.ql.udf.generic.GenericUDTF这个抽象通用类,UDTF相对UDF更为复杂,但是通过它,我们读入一个数据域,输出多行多列,而UDF只能输出单行单列. 代码 文章中所有的代码可以在这里找到:hive examples.GitHub repository 示例数据 首先先创建一张包含示例数据的表:people,该表只有name一列,该列中包含了一个或多个名字

Hive入门到剖析(二)

5 Hive参数 hive.exec.max.created.files 说明:所有hive运行的map与reduce任务可以产生的文件的和 默认值:100000 hive.exec.dynamic.partition 说明:是否为自动分区 默认值:false hive.mapred.reduce.tasks.speculative.execution 说明:是否打开推测执行 默认值:true hive.input.format 说明:Hive默认的input format 默认值: org.a

Hive入门到剖析(一)

1 Hive简介 1.1 Hive定义 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 本质是将SQL转换为MapReduce程序. 1.2 为什么使用Hive 1.面临的问题 人员学习成本太高 项目周期要求太短 我只是需要一个简单的环境 MapReduce  如何搞定 复杂查询好难 Join如何实现 2.为什么要使用Hive 操作接口采用类SQL语法,提供快速开发的能力 避免了去写MapReduce,减少开发人员的学习成本 扩展

hive创建表失败,drop表失败

一.hive创建表失败,报错: CREATE TABLE pokes (foo INT, bar STRING);FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataStoreException: An exception was thrown while adding/validating class(