p=polyfit(x,y,n)
[p,s]= polyfit(x,y,n)
说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s用于生成预测值的误差估计。
多项式曲线求值函数:polyval( )
调用格式: y=polyval(p,x)
[y,DELTA]=polyval(p,x,s)
说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。
[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。
有如下数据
时间t |
1900 |
1910 |
1920 |
1930 |
1940 |
1950 |
1960 |
1970 |
1980 |
1990 |
2000 |
人口y |
76 |
92 |
106 |
123 |
132 |
151 |
179 |
203 |
227 |
250 |
281 |
1. y与t的经验公式为 y = at^2 + bt + c
clear; clf; %清除当前窗口 clc; t = 1900:10:2000; %时间t y = [76 92 106 123 132 151 179 203 227 250 281]; %人口y plot(t,y,‘k*‘); hold on; % figure; %重新开一个图 p1 = polyfit(t,y,2); plot(t, polyval(p1, t)); axis([1900 2000 0 300]); %图像xy轴范围 disp(char([‘y=‘,poly2str(p1,‘t‘)],[‘a=‘,num2str(p1(1)),‘ b=‘,... num2str(p1(2)),‘ c=‘,num2str(p1(3))]));
结果如下:
y= 0.0094289 t^2 - 34.7482 t + 32061.5711 a=0.0094289 b=-34.7482 c=32061.5711
2. y与t的经验公式为y = a e^(bt)
clear; clf; %清除当前窗口 clc; t = 1900:10:2000; %时间t y = [76 92 106 123 132 151 179 203 227 250 281]; %人口y yy = log(y); %指数基尼必需的线性化变形 p2 = polyfit(t,yy,1); b = p2(1); a = exp(p2(2)); y2 = a * exp(b*t); %指数拟合函数式 plot(t,y,‘rp‘,t,y2,‘k-‘); grid off; xlabel(‘时间t‘); ylabel(‘人口数(百万)‘); title(‘人口数据‘);
时间: 2024-10-13 18:33:41