BZOJ 3240 [Noi2013] 矩阵游戏 题解

转载请注明:http://blog.csdn.net/jiangshibiao/article/details/24594825

【原题】

3240: [Noi2013]矩阵游戏

Time Limit: 10 Sec  Memory Limit: 256 MB

Submit: 336  Solved: 158

[Submit][Status]

Description

婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储)。她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:

F[1][1]=1

F[i,j]=a*F[i][j-1]+b (j!=1)

F[i,1]=c*F[i-1][m]+d (i!=1)

递推式中a,b,c,d都是给定的常数。

现在婷婷想知道F[n][m]的值是多少,请你帮助她。由于最终结果可能很大,你只需要输出F[n][m]除以1,000,000,007的余数。

Input

一行有六个整数n,m,a,b,c,d。意义如题所述

Output

包含一个整数,表示F[n][m]除以1,000,000,007的余数

Sample Input

3 4 1 3 2 6

Sample Output

85

HINT

样例中的矩阵为:

1 4 7 10

26 29 32 35

76 79 82 85

【前言】NOI~~这个我以前一直都瞻仰的名词,竟然能离我这么近~~狠下心来,决定做这题。周围的一圈大神都用各种矩阵乘法秒过,我这种蒟蒻就只好慢慢切了。

虽然公式是自己推的,但是代码实在太复杂了,于是对一个大牛做了一些代码上的参考。

【分析】我们先从简单的来推。考虑第一行。

我们可以根据等比数列推出通项式(纸上划划就行了)

然而这只是第一步。

上述公式其实是建立在f[i][x]上的。

根据f[i][m]和f[i+1][1]的公式,我们可以推出f[i+1][1]和f[i][1]的关系。(其实只要再乘上c,加上d即可)

然后是不是有发现了一个规律?把和a,b,c,d有关的全部当成常数,这个公式可以变成最上面的那个公式!这样,我们可以轻松的求出f[x][1]的值。

之后有两个方法:求出f[n][1]并递推至f[n][m];求出f[n+1][1]后,减去d除以c。

我选了第二种。虽然快了一点,但是还要求逆元。(都做到这种份上了,逆元也不过如此了)

到此为止,就求完了。

【注意】①因为n和m的范围很大,我们要用到费马小定理。

这样,我们可以把n先对(p-1)取模,再计算。(因为除掉的那些乘积是1)

②对于a=1的情况要特判。

【代码】

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pll;
const ll MaxN=1000010;
const ll MOD=1000000007;
char s[MaxN],t[MaxN];
struct arr{ll uni,ord;}n,m;  //uni表示a=1的情况,ord表示a≠1的情况
ll a,b,c,d,p,k,t;
void give(char *s,arr &n)
{
    int p=strlen(s);
    for (int i=0;i<p;++i)
    {
        n.uni=(n.uni*10+s[i]-48)%MOD;
        n.ord=(n.ord*10+s[i]-48)%(MOD-1);
    }
}
ll power(ll x,ll y)           //快速幂
{
    ll res=1ll;
    while (y)
    {
      if (y&1ll) res=res*x%MOD;
      y=y/2ll;x=x*x%MOD;
    }
    return res;
}
ll ni(ll x)
{
  return power(x,MOD-2);
}

int main()
{
    scanf("%s%s",s,t);
    scanf("%lld%lld%lld%lld",&a,&b,&c,&d);
    give(s,n);give(t,m);
    if (a==1)
    {
        b=((m.uni-1)*b%MOD*c+d)%MOD;
        a=c;
    }
    else
    {
        k=b*ni(a-1)%MOD;                       //第一次推
        t=power(a,m.ord-1);
        a=c*t%MOD;
        b=((t-1)*k%MOD*c+d)%MOD;
    }
    if (a==1)
    {
        p=(1+n.uni*b)%MOD;
    }
    else
    {
        k=b*ni(a-1)%MOD;
        t=power(a,n.ord);
        p=(t+(t-1)*k)%MOD;                     //第二次推
    }
    printf("%lld",((p-d)*ni(c)%MOD+MOD)%MOD);  //逆元部分
    return 0;
}
时间: 2024-10-23 01:08:10

BZOJ 3240 [Noi2013] 矩阵游戏 题解的相关文章

bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化

3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 613  Solved: 256[Submit][Status] Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式: F[1][1]=1F[i,j]=a*F[i][j-1]+

bzoj 3240: [Noi2013]矩阵游戏

Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式: F[1][1]=1 F[i,j]=aF[i][j-1]+b (j!=1) F[i,1]=cF[i-1][m]+d (i!=1) 递推式中a,b,c,d都是给定的常数. 现在婷婷想知道F[n][m]的值是多少,请你帮助她.由于最终结果可能很大,你只需要输出F[

3240: [Noi2013]矩阵游戏

Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式: F[1][1]=1F[i,j]=a*F[i][j-1]+b (j!=1)F[i,1]=c*F[i-1][m]+d (i!=1)递推式中a,b,c,d都是给定的常数. 现在婷婷想知道F[n][m]的值是多少,请你帮助她.由于最终结果可能很大,你只需要输出F[n

bzoj 1059: [ZJOI2007]矩阵游戏 二分图匹配

1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1891  Solved: 919[Submit][Status] Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选择矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩阵

bzoj 1874 取石子游戏 题解 &amp; SG函数初探

[原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved: 122 [Submit][Status] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. In

bzoj 1059: [ZJOI2007]矩阵游戏 [二分图][二分图最大匹配]

Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N *N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选择 矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩阵的任意行列,交换这两列(即交换 对应格子的颜色)游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑 色.对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根

BZOJ P1059 [ZJOI2007]矩阵游戏——solution

1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4604  Solved: 2211[Submit][Status][Discuss] Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N *N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选择 矩阵的任意两行,交换这两行(即交换对应格子的颜

BZOJ1059:[ZJOI2007]矩阵游戏——题解

http://www.lydsy.com/JudgeOnline/problem.php?id=1059 https://www.luogu.org/problemnew/show/P1129 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作: 行交换操作:选择矩阵的任意两行,交换这两行(即交换对应格子的颜色) 列交换操作:选择矩阵的任意两列,交换这两列(即交换对

【bzoj3240】 Noi2013—矩阵游戏

http://www.lydsy.com/JudgeOnline/problem.php?id=3240 (题目链接) 题意 F[1][1]=1 F[i,j]=a*F[i][j-1]+b (j!=1) F[i,1]=c*F[i-1][m]+d (i!=1) 求解F[n][m],a,b,c,d为常数. Solution 原来费马小定理对于矩阵乘法同样适用..设a为一矩阵,p为质数则: 正好这里的模数1000000007为质数,那么把n,m模上(p-1)后进行矩阵快速幂即可.用来优化的矩阵很好构造,