基本算法复习--排序(java实现)

日常操作中常见的排序方法有:冒泡排序、快速排序、选择排序、插入排序、希尔排序,甚至还有基数排序、鸡尾酒排序、桶排序、鸽巢排序、归并排序等。

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

代码

/**  
 * 冒泡法排序<br/>

* <li>比较相邻的元素。如果第一个比第二个大,就交换他们两个。</li>  
 * <li>对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。</li>  
 * <li>针对所有的元素重复以上的步骤,除了最后一个。</li>  
 * <li>持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。</li>

*   
 * @param numbers  
 *            需要排序的整型数组  
 */  
public static void bubbleSort(int[] numbers) {   
    int temp; // 记录临时中间值   
    int size = numbers.length; // 数组大小   
    for (int i = 0; i < size - 1; i++) {   
        for (int j = i + 1; j < size; j++) {   
            if (numbers[i] < numbers[j]) { // 交换两数的位置   
                temp = numbers[i];   
                numbers[i] = numbers[j];   
                numbers[j] = temp;   
            }   
        }   
    }   
}

快速排序使用分治法策略来把一个序列分为两个子序列。

代码

/**  
 * 快速排序<br/>  
 * <ul>  
 * <li>从数列中挑出一个元素,称为“基准”</li>  
 * <li>重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,  
 * 该基准是它的最后位置。这个称为分割(partition)操作。</li>  
 * <li>递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。</li>  
 * </ul>  
 *   
 * @param numbers  
 * @param start  
 * @param end  
 */  
public static void quickSort(int[] numbers, int start, int end) {   
    if (start < end) {   
        int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)   
        int temp; // 记录临时中间值   
        int i = start, j = end;   
        do {   
            while ((numbers[i] < base) && (i < end))   
                i++;   
            while ((numbers[j] > base) && (j > start))   
                j--;   
            if (i <= j) {   
                temp = numbers[i];   
                numbers[i] = numbers[j];   
                numbers[j] = temp;   
                i++;   
                j--;   
            }   
        } while (i <= j);   
        if (start < j)   
            quickSort(numbers, start, j);   
        if (end > i)   
            quickSort(numbers, i, end);   
    }   
}

选择排序是一种简单直观的排序方法,每次寻找序列中的最小值,然后放在最末尾的位置。

代码

/**  
 * 选择排序<br/>  
 * <li>在未排序序列中找到最小元素,存放到排序序列的起始位置</li>  
 * <li>再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。</li>  
 * <li>以此类推,直到所有元素均排序完毕。</li>

*   
 * @param numbers  
 */  
public static void selectSort(int[] numbers) {   
    int size = numbers.length, temp;   
    for (int i = 0; i < size; i++) {   
        int k = i;   
        for (int j = size - 1; j >i; j--)  {   
            if (numbers[j] < numbers[k])  k = j;   
        }   
        temp = numbers[i];   
        numbers[i] = numbers[k];   
        numbers[k] = temp;   
    }   
}

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。其具体步骤参见代码及注释。

代码

/**  
 * 插入排序<br/>  
 * <ul>  
 * <li>从第一个元素开始,该元素可以认为已经被排序</li>  
 * <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li>  
 * <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li>  
 * <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li>  
 * <li>将新元素插入到该位置中</li>  
 * <li>重复步骤2</li>  
 * </ul>  
 *   
 * @param numbers  
 */  
public static void insertSort(int[] numbers) {   
    int size = numbers.length, temp, j;   
    for(int i=1; i<size; i++) {   
        temp = numbers[i];   
        for(j = i; j > 0 && temp < numbers[j-1]; j--)   
            numbers[j] = numbers[j-1];   
        numbers[j] = temp;   
    }   
}

归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作。参考代码如下:

代码

/**  
 * 归并排序<br/>  
 * <ul>  
 * <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>  
 * <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>  
 * <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>  
 * <li>重复步骤3直到某一指针达到序列尾</li>  
 * <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>  
 * </ul>  
 *   
 * @param numbers  
 */  
public static void mergeSort(int[] numbers, int left, int right) {   
    int t = 1;// 每组元素个数   
    int size = right - left + 1;   
    while (t < size) {   
        int s = t;// 本次循环每组元素个数   
        t = 2 * s;   
        int i = left;   
        while (i + (t - 1) < size) {   
            merge(numbers, i, i + (s - 1), i + (t - 1));   
            i += t;   
        }   
        if (i + (s - 1) < right)   
            merge(numbers, i, i + (s - 1), right);   
    }   
}   
/**  
 * 归并算法实现  
 *   
 * @param data  
 * @param p  
 * @param q  
 * @param r  
 */  
private static void merge(int[] data, int p, int q, int r) {   
    int[] B = new int[data.length];   
    int s = p;   
    int t = q + 1;   
    int k = p;   
    while (s <= q && t <= r) {   
        if (data[s] <= data[t]) {   
            B[k] = data[s];   
            s++;   
        } else {   
            B[k] = data[t];   
            t++;   
        }   
        k++;   
    }   
    if (s == q + 1)   
        B[k++] = data[t++];   
    else  
        B[k++] = data[s++];   
    for (int i = p; i <= r; i++)   
        data[i] = B[i];   
}

将之前介绍的所有排序算法整理成NumberSort类,代码

代码

package test.sort;   
import java.util.Random;   
//Java实现的排序类  
public class NumberSort {   
    //私有构造方法,禁止实例化  
    private NumberSort() {   
        super();   
    }    
    //冒泡法排序 
    public static void bubbleSort(int[] numbers) {   
        int temp; // 记录临时中间值   
        int size = numbers.length; // 数组大小   
        for (int i = 0; i < size - 1; i++) {   
            for (int j = i + 1; j < size; j++) {   
                if (numbers[i] < numbers[j]) { // 交换两数的位置   
                    temp = numbers[i];   
                    numbers[i] = numbers[j];   
                    numbers[j] = temp;   
                }   
            }   
        }   
    }   
    //快速排序
    public static void quickSort(int[] numbers, int start, int end) {   
        if (start < end) {   
            int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)   
            int temp; // 记录临时中间值   
            int i = start, j = end;   
            do {   
                while ((numbers[i] < base) && (i < end))   
                    i++;   
                while ((numbers[j] > base) && (j > start))   
                    j--;   
                if (i <= j) {   
                    temp = numbers[i];   
                    numbers[i] = numbers[j];   
                    numbers[j] = temp;   
                    i++;   
                    j--;   
                }   
            } while (i <= j);   
            if (start < j)   
                quickSort(numbers, start, j);   
            if (end > i)   
                quickSort(numbers, i, end);   
        }   
    }   
    //选择排序 
    public static void selectSort(int[] numbers) {   
        int size = numbers.length, temp;   
        for (int i = 0; i < size; i++) {   
            int k = i;   
            for (int j = size - 1; j > i; j--) {   
                if (numbers[j] < numbers[k])   
                    k = j;   
            }   
            temp = numbers[i];   
            numbers[i] = numbers[k];   
            numbers[k] = temp;   
        }   
    }   
    //插入排序    
    // @param numbers  
    public static void insertSort(int[] numbers) {   
        int size = numbers.length, temp, j;   
        for (int i = 1; i < size; i++) {   
            temp = numbers[i];   
            for (j = i; j > 0 && temp < numbers[j - 1]; j--)   
                numbers[j] = numbers[j - 1];   
            numbers[j] = temp;   
        }   
    }   
    //归并排序  
    public static void mergeSort(int[] numbers, int left, int right) {   
        int t = 1;// 每组元素个数   
        int size = right - left + 1;   
        while (t < size) {   
            int s = t;// 本次循环每组元素个数   
            t = 2 * s;   
            int i = left;   
            while (i + (t - 1) < size) {   
                merge(numbers, i, i + (s - 1), i + (t - 1));   
                i += t;   
            }   
            if (i + (s - 1) < right)   
                merge(numbers, i, i + (s - 1), right);   
        }   
    }    
    //归并算法实现  
    private static void merge(int[] data, int p, int q, int r) {   
        int[] B = new int[data.length];   
        int s = p;   
        int t = q + 1;   
        int k = p;   
        while (s <= q && t <= r) {   
            if (data[s] <= data[t]) {   
                B[k] = data[s];   
                s++;   
            } else {   
                B[k] = data[t];   
                t++;   
            }   
            k++;   
        }   
        if (s == q + 1)   
            B[k++] = data[t++];   
        else  
            B[k++] = data[s++];   
        for (int i = p; i <= r; i++)   
            data[i] = B[i];   
    }   
  
}

数字排序算法通常用来作为算法入门课程的基本内容,在实际应用(尤其是普通商业软件)中使用的频率较低,但是通过排序算法的实现,可以深入了解计算机语言的特点,可以以此作为学习各种编程语言的基础。

时间: 2024-08-06 17:27:15

基本算法复习--排序(java实现)的相关文章

C语言排序算法复习

排序算法有很多种,这里在复习和分析的基础上,做一个自己的总结: 首先要知道有哪些排序算法,google一下,有云C语言7大经典排序算法(也有8大).主要包括冒泡排序,快速排序,选择排序,插入排序,希尔排序,归并排序,堆排序,8大的还有基数排序.各有各的版本,代码写法也各不相同.所以这里以整理思路为先,代码只是作为自己的一个备份. 搞清楚的概念:稳定排序和不稳定排序,就看序列中两个值相等的数,排完序之后的相对位置是否改变,如果改变了就不稳定. 内部排序和外部排序,只用到内存即可完成排序的就叫内部排

Java数据结构与算法之排序

排序从大体上来讲,做了两件事情: 1.比较两个数据项: 2.交换两个数据项,或复制其中一项 一.冒泡排序 大O表示法:交换次数和比较次数都为O(N*N). 算法原理: 1.比较相邻的元素.如果第一个比第二个大,就交换他们两个. 2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 3.针对所有的元素重复以上的步骤,除了最后一个. 4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较. /** * 冒泡排序 demo * */

排序算法复习

排序算法复习 作者:vpoet mails:[email protected] 注:转载请注明出处 #include <iostream> #include <windows.h> using namespace std; void Bubble_Sort(int UnSort[],int length); void Select_Sort(int UnSort[],int length); void Insert_Sort(int UnSort[],int length); vo

数据结构与算法复习(一) 排序算法(I)

这篇文章将会介绍最常见的排序算法(使用 JavaScript 语言实现) PS:这里我会尽量使用语言无关的语法去写,大家不要太在意语言,重要的是算法的实现思路 1.冒泡排序 将数组分为有序区(左边)和无序区(右边) 每次从无序区的最后一个元素开始,一直向前冒泡到无序区的第一个位置,使其变成有序 function swap(A, i, j) { if (i === j) return [A[i], A[j]] = [A[j], A[i]] } function bubbleSort(A) { fo

算法练习5---快速排序Java版

基本思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 例如 3 1 5 2 7 9 3 0 首先以3为基准数,基准数的意思就是以这个数为参考,其他数和它做比较,现在例如有两个人,分别从左边和右边开始找,右边的人要找到比基准数3小的数,左边的人找比基准数3大的数,找到以后进行交换,右边的人先开始找,例如上面的数组,右边的人从0开始找,0比3小

java基础算法之排序

总体基础算法总结 http://blog.csdn.net/lilong_dream/article/details/23356513 基础算法之排序 http://www.cnblogs.com/qqzy168/archive/2013/08/03/3219201.html 基础算法之数组.字符串 String l="helloworld";toCharArray 将字符串转化成数组char[] a1=l.toCharArray(); toCharArray()  //获得字符串对应

简单排序算法设计(Java)

总共有八种排序算法,还是慢慢看吧 1.简单排序算法 简单排序算法就是设置标兵,逐个比较数,然后查找插入位置,插入 public static void p(int[] a){ for(int i=0;i<a.length;i++){ System.out.print(a[i]+" "); } } public static void sorting(int[] a){ int m =a.length; for(int i=1;i<m;i++){ if(i==1){ if(a

Kruskal算法(三)之 Java详解

前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的

(转载)经典排序算法-希尔排序

经典排序算法 - 希尔排序Shell sort 希尔排序Shell Sort是基于插入排序的一种改进,同样分成两部分, 第一部分,希尔排序介绍 第二部分,如何选取关键字,选取关键字是希尔排序的关键 第一块希尔排序介绍 准备待排数组[6 2 4 1 5 9] 首先需要选取关键字,例如关键是3和1(第一步分成三组,第二步分成一组),那么待排数组分成了以下三个虚拟组: [6 1]一组 [2 5]二组 [4 9]三组 看仔细啊,不是临近的两个数字分组,而是3(分成了三组)的倍数的数字分成了一组, 就是每