图像处理之积分图应用四(基于局部均值的图像二值化算法)

图像处理之积分图应用四(基于局部均值的图像二值化算法)

基本原理

均值法,选择的阈值是局部范围内像素的灰度均值(gray mean),该方法的一个变种是用常量C减去均值Mean,然后根据均值实现如下操作:

pixel = (pixel > (mean - c)) ? object : background

其中默认情况下参数C取值为0。object表示前景像素,background表示背景像素。

实现步骤

1. 彩色图像转灰度图像

2. 获取灰度图像的像素数据,预计算积分图

3. 根据输入的参数窗口半径大小从积分图中获取像素总和,求得平均值

4.循环每个像素,根据局部均值实现中心像素的二值化赋值

5.输入二值图像

运行结果:

代码实现:

package com.gloomyfish.ii.demo;

import java.awt.image.BufferedImage;

public class FastMeanBinaryFilter extends AbstractImageOptionFilter {

    private int constant;
    private int radius;
    public FastMeanBinaryFilter() {
        constant = 10;
        radius = 7; // 1,2,3,4,5,6,7,8
    }

    public int getConstant() {
        return constant;
    }

    public void setConstant(int constant) {
        this.constant = constant;
    }

    public int getRadius() {
        return radius;
    }

    public void setRadius(int radius) {
        this.radius = radius;
    }

    @Override
    public BufferedImage process(BufferedImage image) {
        int width = image.getWidth();
        int height = image.getHeight();

        BufferedImage dest = createCompatibleDestImage( image, null );
        // 图像灰度化
        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        byte[] binData = new byte[width*height];
        getRGB( image, 0, 0, width, height, inPixels );
        int index = 0;
        for(int row=0; row<height; row++) {
            int ta = 0, tr = 0, tg = 0, tb = 0;
            for(int col=0; col<width; col++) {
                index = row * width + col;
                ta = (inPixels[index] >> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                int gray= (int)(0.299 *tr + 0.587*tg + 0.114*tb);
                binData[index] = (byte)gray;
            }
        }

        // per-calculate integral image
        IntIntegralImage grayii = new IntIntegralImage();
        grayii.setImage(binData);
        grayii.process(width, height);
        int yr = radius;
        int xr = radius;
        int size = (yr * 2 + 1)*(xr * 2 + 1);
        for (int row = 0; row < height; row++) {
            for (int col = 0; col < width; col++) {
                index = row * width + col;

                // 计算均值
                int sr = grayii.getBlockSum(col, row, (yr * 2 + 1), (xr * 2 + 1));
                int mean = sr / size;
                int pixel = binData[index]&0xff;

                // 二值化
                if(pixel > (mean-constant)) {
                    outPixels[row * width + col] = (0xff << 24) | (0xff << 16) | (0xff << 8) | 0xff;
                } else {
                    outPixels[row * width + col] = (0xff << 24) | (0x00 << 16) | (0x00 << 8) | 0x00;
                }
            }
        }

        // 返回结果
        setRGB(dest, 0, 0, width, height, outPixels);
        return dest;
    }

}

2017年已经开始啦!博客每个月都会有图像处理相关技术文章更新,欢迎大家继续关注!

时间: 2024-10-02 01:05:25

图像处理之积分图应用四(基于局部均值的图像二值化算法)的相关文章

基于直方图的图像二值化算法实现

引言 图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析.特征提取与模式识别之前的必要的图像预处理过程.在过去年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果. 在分类方法中,基于直方图的全局二值算法都从不同的科学层次提出了各自的实施方案,并且这类方法都有着一些共同的特点:简单.算法容易实现和执行速度快. 算法代码 第一种方法Huang L.-K et al.参考代

十三种基于直方图的图像全局二值化算法原理、实现、代码及效果(转)

十三种基于直方图的图像全局二值化算法原理.实现.代码及效果(转) http://www.cnblogs.com/carekee/articles/3643394.html 图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析.特征提取与模式识别之前的必要的图像预处理过程.这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果. 在这些庞大的分

Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化

原文:Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化  [函数名称] 简单统计法图像二值化 WriteableBitmap StatisticalThSegment(WriteableBitmap src) /// <summary> /// Statistical method of image segmention. /// </summary> /// <param name="src">The source im

【华为云技术分享】灰度图二值化算法

[摘要] 目前最常用的快速二值化阈值确定方法为根据每一张目标图像来动态的计算平均灰度值.然后将灰度图像中的每个像素灰度值和此平均阈值作对比,高于平均阈值的记为“1”(白色),低于的则设置为“0”(黑色).这种方法虽然会让造成部分背景像素点丢失,但却是最简单高效的处理方法. 灰度图片中都可以用一个具体的灰度值Grav来量化每一个像素点.考虑到实际识别的二值特征,为了让被处理目标答题卡更加简单,计算量更少,速度更快,我们可以直接对灰度图片进行二值化处理. 图像二值化简单来说就是讲整个灰度图片的目标像

数字图像处理_图像二值化_jzcjedu

皮卡丘:“师兄! ” 师兄:“干嘛…?” 皮卡丘:“你帮我看看这个,这是我打车的发票,看起来有点不太清晰,老板说不给我报销…” 师兄:“你仿佛在特意逗我笑,这不是很清楚嘛!!! ” 皮卡丘:“我老板有强迫症,他说这个扫描之后不清楚,让我弄清晰点再给他,不然就不给我钱.师兄,你一定要帮我呀,不然以后都不能打车了.” 师兄:“不急,我先看看,我记得当初张康老师教过我对于这种信噪比很高的图像你要提取出想要的信息的话用二值化处理又简单又方便.“ 皮卡丘:“这样啊,快弄给我看看.“ 稍等,我开一下MATL

MATLAB:图像二值化、互补图(反运算)(im2bw,imcomplement函数)

图像二值化.反运算过程涉及到im2bw,imcomplement函数,反运算可以这么理解:原本黑的区域变为白的区域,白的区域变为黑的区域. 实现过程如下: close all; %关闭当前所有图形窗口,清空工作空间变量,清除工作空间所有变量 clear all; clc; J=imread('rice.png');% 读取灰度图像,赋值给J J1=im2bw(J);%将灰度图像转换成二值图像,赋值给J1 J2=imcomplement(J);%求灰度图像的补,即对图像进行求反运算,赋值给J2 J

图像处理之基于Otsu阈值二值化

图像处理之基于Otsu阈值实现图像二值化 一:基本原理 该方法是图像二值化处理常见方法之一,在Matlab与OpenCV中均有实现. Otsu Threshing方法是一种基于寻找合适阈值实现二值化的方法,其最重 要的部分是寻找图像二值化阈值,然后根据阈值将图像分为前景(白色) 或者背景(黑色).假设有6x6的灰度图像,其像素数据及其对应的直方 图如下图: 阈值寻找方法首先假设是为T=3,则背景像素的比重.均值.方差的计算 结果如下: 根据前景像素直方图,计算比重.均值.方差的过程如下: 上述整

[转载+原创]Emgu CV on C# (四) —— Emgu CV on 二值化

重点介绍了二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程. 图像的预处理在进行图像二值化操作前要对图像进行预处理,包括彩色图像灰化和增强.由于选取阈值需要参照直方图,因此在图像进行处理后,我们再获取图像的直方图以帮助选取阈值.整个流程如下所示: 读取图像→灰度图像→图像增强→图像直方图→二值化处理 2.数学原理(转载,基本可以不

[转载+原创]Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化

局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自<OpenCV_基于局部自适应阈值的图像二值化>) 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适