人工神经网络 深度学习 MLP RBF RBM DBN DBM CNN 整理学习

注:整理自向世明老师的PPT

内容提要


1 发展历史

2 前馈网络(单层感知器,多层感知器,径向基函数网络RBF)

3 反馈网络(Hopfield网络,联想存储网络,SOM,Boltzman及受限的玻尔兹曼机RBM,DBN,CNN)

发展历史



单层感知器


1 基本模型

2 如果激励函数是线性的话,可用最小二乘直接计算

3 如果激励函数是sifmoid function,可迭代更新(一次性或者逐样本更新)

上式只做了简单的求导展开,很容易推导

多层感知器


1 基本模型

2 举例(含有一个隐含层的多层感知器MLP)

模型:

y=h(v)=h(h(u))

求解:

这里怎么转换到6k(xi)的?

然后分别对两个层的权值求导:

然后更新即可,反向传播(BP)

3 经验

4 优缺点

RBF神经网络


1 模型

2 求解

3 优点和视角

深度学习简介


1 前向神经网络

2 发展历程

3 整体一览

4 一些值得关注

学术

工业

Belief Network & Hopfield Network & Boltzman机 & RBM 结构一瞥


1 Belief Network

2 Hopfield Network

3 Boltzman机

4 RBM 受限的玻尔兹曼机

RBM


1 模型

利用上图中公式,可以得到

2 求解 CD算法

DBN


1 模型

2 训练

面向特征提取

面向分类

DBM


模型

CNN


1 模型

2 训练

参考文献


时间: 2024-10-01 04:33:58

人工神经网络 深度学习 MLP RBF RBM DBN DBM CNN 整理学习的相关文章

人工神经网络简介

本文主要对人工神经网络基础进行了描述,主要包括人工神经网络的概念.发展.特点.结构.模型. 本文是个科普文,来自网络资料的整理. 一.             人工神经网络的概念 人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型.该模型以并行分布的处理能力.高容错性.智能化和自学习等能力为特征,

人工神经网络

人工神经网络初窥 人工神经网络(Artificial Neural Network,简称ANN ),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统.人工神经网络具有自学习.自组织.自适应以及很强的非线性函数逼近能力,拥有强大的容错性.它可以实现仿真.预测以及模糊控制等功能.是处理非线性系统的有力工具.(摘自百度百科)           关于神经网络的定义尚不统一,按美国神经网络学家 Hecht Nielsen 的观点,神经网络的定义是:“神经网络是由多个非常

深度学习——人工神经网络再掀研究热潮

深度学习——人工神经网络再掀研究热潮 胡晓林 人工神经网络起源于上世纪40年代,到今天已经70年历史了.就像人的一生,经历了起起落落,有过辉煌,有过黯淡,有过嘈杂,有过冷清.总体说来,过去的20年中人工神经网络的研究不温不火,直到最近三五年,随着深度学习概念的提出,人工神经网络才又重新焕发生机,甚至再度掀起研究热潮.本文简述一下人工神经网络的“前世今生”,并简单展望一下它的未来. 第一个神经元模型是1943年McCulloch和Pitts提出的,称为threshold logic,它可以实现一些

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式.在机器学习或者人工智能领域,人们首先会考虑算法的学习方式.在机器学习领域,有几种主要的学习方式.将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果. 监督式学习: 在监督式学习下,输入数据被称为"训练数据",每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中"垃圾邮件""非垃圾邮件",对手写数字识别中的&

开源的人工神经网络计算库 FANN 学习笔记 1

开源的人工神经网络计算库 FANN 学习笔记 1 这年头机器学习非常的火,神经网络算是机器学习算法中的比较重要的一种.这段时间我也花了些功夫,学了点皮毛,顺便做点学习笔记. 介绍人工神经网络的基本理论的教科书很多.我正在看的是蒋宗礼教授写的<人工神经网络导论>,之所以选这本书,主要是这本比较薄,太厚的书实在是啃不动.这本书写的也比较浅显,用来入门正合适. 看书的同时也在网上找了找人工神经网络的库代码.感觉 FANN 这个库还不错,就顺道学了学这个库的使用方法. FANN 是个开源的 C 语言实

漫谈机器学习经典算法—人工神经网络

更新:文章迁移到了这里.http://lanbing510.info/2014/11/07/Neural-Network.html,有对应的PPT链接. 注:整理自向世明老师的PPT 看不到图片的同学能够直接打开链接:https://app.yinxiang.com/shard/s31/sh/61392246-7de4-40da-b2fb-ccfd4f087242/259205da4220fae3 内容提要 1 发展历史 2 前馈网络(单层感知器,多层感知器.径向基函数网络RBF) 3 反馈网络

Deep Learning(深度学习)之(四)Deep Learning学习资源

十一.参考文献和Deep Learning学习资源 先是机器学习领域大牛的微博:@余凯_西二旗民工:@老师木:@梁斌penny:@张栋_机器学习:@邓侃:@大数据皮东:@djvu9-- (1)Deep Learning http://deeplearning.net/ (2)Deep Learning Methods for Vision http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/ (3)Neural Network for

基于SVM与人工神经网络的车牌识别系统

最近研究了支持向量机(Support Vector Machine,SVM)和人工神经网络(Artifical Neural Network,ANN)等模式识别理论,结合OpenCV的书:<Mastering OpenCV with Practical Computer Vision Projects>,将两种思想运用到车辆的车牌识别算法中.车辆识别结合了多种图像处理技术,如视频监控.图像检测.图像分割和光学字符识别(OCR)等,在道路交通监控中有着重要的作用.以下内容主要包含几个方面: 车牌

人工神经网络--ANN

神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经元之多. 图1 人脑神经网络 那么机