Kafka Topic Partition GroupId 及高可用

Topic主题用来区分不同类型的消息,实际也就是适用于不同的业务场景,默认消息保存一周时间;

同一个Topic主题下,默认是一个partition分区,也就是只能有一个消费者来消费,如果想提升消费能力,就需要增加分区;

同一个Topic的多个分区,可以有三种方式分派消息(key,value)到不同的分区,指定分区、HASH路由、默认,同一个分区内的消息ID唯一,并顺序;

消费者消费partition分区内的消息时,是通过offsert来标识消息的位置;

GroupId用来解决同一个Topic主题下重复消费问题,比如一条消费需要多个消费者接收到,就可以通过设置不同的GroupId实现,

实际消息是存一份的,只是通过逻辑上设置标识来区分,系统会记录Topic主题下--》GroupId分组下--》partition分区下的offsert,来标识是否消费过。

发送消息的高可用---

集群模式,多副本方式实现;一条消息的提交,可能通过设置acks标识实现不同的可用性,=0时,发送成功就OK;=1时,master成功响应才OK,=all时,一半以上的响应才OK(真正的高可用)

消费消息的高可用---

可以关闭自动标识offsert模式,先拉取消息,消费完成后,再去设置offsert位置,来解决消费高可用

原文地址:https://www.cnblogs.com/yefeng654321/p/12341704.html

时间: 2024-10-09 03:30:02

Kafka Topic Partition GroupId 及高可用的相关文章

Kafka Topic Partition Replica Assignment实现原理及资源隔离方案

本文共分为三个部分: Kafka Topic创建方式 Kafka Topic Partitions Assignment实现原理 Kafka资源隔离方案 1. Kafka Topic创建方式 Kafka Topic创建方式有以下两种表现形式: (1)创建Topic时直接指定Topic Partition Replica与Kafka Broker之间的存储映射关系 /usr/lib/kafka_2.10-0.8.2.1/bin/kafka-topics.sh --zookeeper ZooKeep

ELK架构下利用Kafka Group实现Logstash的高可用

系统运维的过程中,每一个细节都值得我们关注 下图为我们的基本日志处理架构 所有日志由Rsyslog或者Filebeat收集,然后传输给Kafka,Logstash作为Consumer消费Kafka里边的数据,分别写入Elasticsearch和Hadoop,最后使用Kibana输出到web端供相关人员查看,或者是由Spark接手进入更深层次的分析 在以上整个架构中,核心的几个组件Kafka.Elasticsearch.Hadoop天生支持高可用,唯独Logstash是不支持的,用单个Logsta

常用组件、kafka集群、hadoop高可用

1.Zookeeper安装搭建Zookeeper集群并查看各服务器的角色停止Leader并查看各服务器的角色 1.1 安装Zookeeper1)编辑/etc/hosts ,所有集群主机可以相互 ping 通(在nn01上面配置,同步到node1,node2,node3)nn01 hadoop]# vim /etc/hosts192.168.1.21 nn01192.168.1.22 node1192.168.1.23 node2192.168.1.24 node3 2)安装 java-1.8.0

elasticsearch集群搭建 kafka filebeat logstach收集日志高可用方案

文档在很久之前写的了,这里留个记录,我的码云地址    点击查看 原文地址:https://www.cnblogs.com/LDDXFS/p/12052072.html

Hadoop学习笔记-011-CentOS_6.5_64_HA高可用-Zookeeper3.4.5安装Kafka+消息监控KafkaOffsetMonitor

参考: http://www.cnblogs.com/smartloli/p/4538173.html http://blog.csdn.net/lsshlsw/article/details/47342821 虚拟机中共五个centos系统,每个系统有两个用户root和hadoop:cdh1,cdh2,cdh3,cdh4,cdh5 集群规划 安装kafka(cdh3机器) 第一步,解压已下载好的kafka安装包 #tar -zxvf kafka_2.9.2-0.8.2.2.tgz 解压后删除k

kafka 分区和副本以及kafaka 执行流程,以及消息的高可用

1.Kafka概览 Apache下的项目Kafka(卡夫卡)是一个分布式流处理平台,它的流行是因为卡夫卡系统的设计和操作简单,能充分利用磁盘的顺序读写特性.kafka每秒钟能有百万条消息的吞吐量,因此很适合实时的数据流处理.例如kafka在线日志收集系统可作为flume的实时消息sink端,再通过kafka的消费者将消息实时写入hbase数据库中. 卡夫卡以topic分类对记录进行存储,每个记录包含key-value和timestamp. 1.1卡夫卡系统的组件.角色 broker: 每个正在运

Kafka学习之路 (三)Kafka的高可用

一.高可用的由来 1.1 为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费,这与Kafka数据持久性及Delivery Guarantee的设计目标相悖.同时Producer都不能再将数据存于这些Partition中. 如果Producer使用同步模式则Producer会在尝试重新发送message.send.max.retries(默认值为3)次后抛出Exception,

kafka记录(3)Kafka高可用

摘自:https://www.cnblogs.com/qingyunzong/p/9004703.html 一.高可用的由来 1.1 为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费,这与Kafka数据持久性及Delivery Guarantee的设计目标相悖.同时Producer都不能再将数据存于这些Partition中. 如果Producer使用同步模式则Produce

Kafka 高可用设计

Kafka 高可用设计 2016-02-28 杜亦舒 Kafka在早期版本中,并不提供高可用机制,一旦某个Broker宕机,其上所有Partition都无法继续提供服务,甚至发生数据丢失 对于分布式系统,当集群规模上升到一定程度后,宕机的可能性大大提高,对高可用性就有了非常高要求 Kafka在0.8版本提供了高可用机制,主要是增加了Partition的复制设计 引入Partition的Replication之后,同一个Partition的就有了多个副本,把这些副本均匀的分布到多个Broker上,