利用Tensorflow实现神经网络模型

首先看一下神经网络模型,一个比较简单的两层神经。

代码如下:

# 定义参数
n_hidden_1 = 256    #第一层神经元
n_hidden_2 = 128    #第二层神经元
n_input = 784       #输入大小,28*28的一个灰度图,彩图没有什么意义
n_classes = 10      #结果是要得到一个几分类的任务

# 输入和输出
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])

# 权重和偏置参数
stddev = 0.1
weights = {
    ‘w1‘: tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=stddev)),
    ‘w2‘: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)),
    ‘out‘: tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev))
}
biases = {
    ‘b1‘: tf.Variable(tf.random_normal([n_hidden_1])),
    ‘b2‘: tf.Variable(tf.random_normal([n_hidden_2])),
    ‘out‘: tf.Variable(tf.random_normal([n_classes]))
}
print ("NETWORK READY")

def multilayer_perceptron(_X, _weights, _biases):
    #第1层神经网络 = tf.nn.激活函数(tf.加上偏置量(tf.矩阵相乘(输入Data, 权重W1), 偏置参数b1))
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights[‘w1‘]), _biases[‘b1‘]))
    #第2层的格式与第1层一样,第2层的输入是第1层的输出。
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, _weights[‘w2‘]), _biases[‘b2‘]))
    #返回预测值
    return (tf.matmul(layer_2, _weights[‘out‘]) + _biases[‘out‘])

# 预测
pred = multilayer_perceptron(x, weights, biases)

# 计算损失函数和优化
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optm = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost)
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accr = tf.reduce_mean(tf.cast(corr, "float"))

# 初始化
init = tf.global_variables_initializer()
print ("FUNCTIONS READY")

# 训练
training_epochs = 20
batch_size      = 100
display_step    = 4
# LAUNCH THE GRAPH
sess = tf.Session()
sess.run(init)
# 优化器
for epoch in range(training_epochs):
    avg_cost = 0.
    total_batch = int(mnist.train.num_examples/batch_size)
    # 迭代训练
    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        feeds = {x: batch_xs, y: batch_ys}
        sess.run(optm, feed_dict=feeds)
        avg_cost += sess.run(cost, feed_dict=feeds)
    avg_cost = avg_cost / total_batch
    # 打印结果
    if (epoch+1) % display_step == 0:
        print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
        feeds = {x: batch_xs, y: batch_ys}
        train_acc = sess.run(accr, feed_dict=feeds)
        print ("TRAIN ACCURACY: %.3f" % (train_acc))
        feeds = {x: mnist.test.images, y: mnist.test.labels}
        test_acc = sess.run(accr, feed_dict=feeds)
        print ("TEST ACCURACY: %.3f" % (test_acc))
print ("OPTIMIZATION FINISHED")
时间: 2024-10-11 07:24:30

利用Tensorflow实现神经网络模型的相关文章

使用Tensorflow训练神经网络模型

最近正在入坑机器学习,前期以读代码为主.买了一本才云科技郑泽宇的书,叫做<Tensorflow,实战Google深度学习框架>,觉得很适合入门的小菜鸟,拿出来跟大家分享下. 下面是第一个完整的训练神经网络模型的代码,里面综合了作者和我在网上查到的其他人关于代码的解读.整理之后如下: 1 #-*-coding:UTF-8-*- 2 import tensorflow as tf 3 #通过numpy工具包生成模拟数据集 4 from numpy.random import RandomState

记一次使用Tensorflow搭建神经网络模型经历

隐去背景, 作者最近第一次用Tensorflow实现训练了几个模型, 其中遇到了一些错误, 把它记录下来 前言 以下提到的所有代码, 都可以在github上面找到. 仓库地址 https://github.com/spxcds/neural_network_code/ 这个仓库里提到的几段代码, 分别实现在从最简单的lr, 到全连接神经网络, 再到卷积神经网络. 从最简单的自己实现交叉熵损失函数, 计算L2正则化, 到后来直接调用库函数, 由简到难, 由浅入深, 截止目前为止, 只实现了MLR,

利用Tensorflow实现卷积神经网络模型

首先看一下卷积神经网络模型,如下图: 卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC池化层:为了减少运算量和数据维度而设置的一种层. 代码如下: n_input = 784 # 28*28的灰度图 n_output = 10 # 完成一个10分类的操作 weights = { #'权重参数': tf.Variable(tf.高期([feature的H, feature的W, 当前feature连接的输入的深度, 最终想得到

基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型

一.卷积神经网络模型知识要点卷积卷积 1.卷积 2.池化 3.全连接 4.梯度下降法 5.softmax 本次就是用最简单的方法给大家讲解这些概念,因为具体的各种论文网上都有,连推导都有,所以本文主要就是给大家做个铺垫,如有错误请指正,相互学习共同进步. 二.卷积神经网络讲解 2.1卷积神经网络作用 大家应该知道大名鼎鼎的傅里叶变换,即一个波形,可以有不同的正弦函数和余弦函数进行叠加完成,卷积神经网络也是一样,可以认为一张图片是由各种不同特征的图片叠加而成的,所以它的作用是用来提取特定的特征,举

【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先解释以下MNIST数据集,训练数据集有55,000 条,即X为55,000 * 784的矩阵,那么Y为55,000 * 10的矩阵,每个图片是28像素*28像素,带有标签,Y为该图片的真实数字,即标签,每个图片10个数字,1所在位置

Tensorflow 对上一节神经网络模型的优化

本节涉及的知识点: 1.在程序中查看变量的取值 2.张量 3.用张量重新组织输入数据 4.简化的神经网络模型 5.标量.多维数组 6.在TensorFlow中查看和设定张量的形态 7.用softmax函数规范可变参数 8.小结:线性问题 一.在程序中查看变量的取值 x = 1 y = 2.2 z = "adc" print("x is: %d" % x) print("y is: %f" % y) print("z is: %s&quo

tensorflow 神经网络模型概览;熟悉Eager 模式;

典型神经网络模型:(图片来源:https://github.com/madalinabuzau/tensorflow-eager-tutorials) 保持更新,更多内容请关注 cnblogs.com/xuyaowen; 原文地址:https://www.cnblogs.com/xuyaowen/p/tensorflow-nn-Eager.html

自然语言处理的神经网络模型初探

欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 深度学习(Deep Learning)技术对自然语言处理(NLP,Natural Language Processing)领域有着巨大的影响. 但作为初学者,您要从何处开始学习呢? 深度学习和自然语言处理都是较为广阔的领域,但每个领域重点研究些什么?在自然语言处理领域中,又是哪一方面最受深度学习的影响呢? 通过阅读本文,您会对自然语言处理中的深度学习有一个初步的认识. 阅读这篇文章后,您可以知道: 对自然语言处理领域影响最为深远的神经网络结

利用Tensorflow进行自然语言处理(NLP)系列之一Word2Vec

写在前面的话(可略过): 一直想写下.整理下利用Tensorflow或Keras工具进行自然语言处理(NLP)方面的文章,对比和纠结了一段时间,发现博众家之长不如静下心来一步一个脚印地去看一本书来得更实在,虽然慢但是心里相对踏实些.近期刚把Thushan Ganegedara写的<Natural Language Processing with TensorFlow>(2018年5月第一次出版),目前没看到中文版.讲真,看原版书确实很耗费精力,但原版书的好处是可以原汁原味地探索.写博文的过程中