统计信息内幕:直方图和密度向量

有个问题:在执行计划里运算符的估计行数是42,但是你知道查询的正确行数不是42。你也听说了SQL Server使用统计信息来作此估计的?但我们怎么看懂统计信息,来理解这里的估计是怎么来的?

今天我想谈下SQL Server里的统计信息,在直方图(histogram)密度向量(density vector)里,SQL Server内部是如何保存这些值的并用此来估计行数的。

直方图(Histogram)

首先我们来看下直方图。直方图的用途是用高效、压缩的方式存储列数据分布情况。每次当你在表上创建索引时(聚集/非聚集索引),SQL Server会为你自动创建统计信息。这个统计信息就包含了那列(索引键)的数据分布信息。比如你有一个订单表,里面有个Country列,这列里有很多国家名字。因此直方图就是对这些国家个数分布情况的可视化:

在直方图里,我们用很多柱条描述数据分布情况:柱条越高,那列的这个值就记录数就越多。SQL Server使用同样的概念和格式来描述数据分布情况。我们通过一个例子来详细了解下。在AdventureWorks2008R2数据库里,我们找到表SalesOrderDetail里的ProductID列。这ProductID列存储着具体的销售产品ID信息。可以看到,ProductID列也有索引定义,那就说有对应的统计信息来描述ProductID列的数据分布情况。

在SSMS里,你通过查看表属性来查看列和统计信息,也可以使用DBCC SHOW_STATISTICS命令在结果里输出统计信息。

1 -- Show the statistics for a given index
2 DBCC SHOW_STATISTICS (‘Sales.SalesOrderDetail‘, IX_SalesOrderDetail_ProductID)
3 GO

从上图可以看到,这个命令返回3个不同的记录集:

  • 数据显示标题
  • 密度向量
  • 直方图

我们来关注下这3个部分信息,看看它们是如何被用来做参数预估(Cardinality Estimation) (估计行数的计算)。现在我们对SalesOrderDetail表执行一个简单的查询,点击工具栏的显示包含实际的执行计划。如你所见,我们只要ProductID列值为707的记录:

1 -- SQL Server使用EQ_ROWS值来做预估,这个值在直方图里可以直接取到。
2 -- 对于筛选器运算符估计行数是3083.
3 SELECT * FROM Sales.SalesOrderDetail
4 WHERE ProductID = 707
5 GO

查询返回121317条记录中的3083条记录。因为我们没有定义覆盖非聚集索引(这里也用不到,因为用了SELECT *),这个查询已经越过临界点了,从执行计划里可以看到,SQL Server已经选择了非聚集索引扫描运算符。

在执行计划里,筛选器运算符的属性信息(鼠标移到运算符上会显示属性信息)的谓词部分,这里显示了过滤记录条件是ProductID值是707,还有估计行数是3083。看来这里的统计信息非常准确。但问题是这个估计是从哪里来的呢?当你看直方图时,我们可以看到很多行(最大梯级(步长)数为 200),这里描述ProductID列数据分布情况。

直方图的每一行有以下列:

  • RANGE_HI_KEY     直方图梯级的上限列值。列值也称为键值。
  • RANGE_ROWS    其列值位于直方图梯级内(不包括上限)的行的估算数目。
  • EQ_ROWS    其列值等于直方图梯级的上限的行的估算数目。
  • DISTINCT_RANGE_ROWS   非重复列值位于直方图梯级内(不包括上限)的行的估算数目。
  • AVG_RANGE_ROWS   重复列值位于直方图梯级内(不包括上限)的平均行数(如果 DISTINCT_RANGE_ROWS > 0,则为 RANGE_ROWS / DISTINCT_RANGE_ROWS)。

RANGE_HI_KEY列可以看到,ProductID值为707的记录有3083。这与我们查询的限制条件完全匹配。在这个情况下,SQL Server使用EQ_ROWS列的值用作参数预估——这里是3083。这就是执行计划里筛选器运算符用到的估计方法。

我们再来看个查询:

1 -- 值为915记录数在直方图里不能直接取到,因此SQL Server使用AVG_RANGE_ROWS列值来做预估。
2 -- 在910到916之间有150条记录,不同值个数是4(DISTINCT_RANGE_ROWS)。
3 -- 因此对于非聚集查找,SQL Server估计150/4=37.5条记录。
4 SELECT * FROM Sales.SalesOrderDetail
5 WHERE ProductID = 915
6 GO

这里我们只返回ProductID列值为915的记录。但是在直方图里,我们找不到915的对应值。直方图里存储了910到916之间的值。这个范围内的记录数有150条(RANGE_ROWS),不包括910和916这2个值。在这个150条记录里,有4个不同值(DISTINCT_RANGE_ROWS)。这就是说915的记录数在910与916之间是37.5(AVG_RANGE_ROWS=150/4)。

因此在这个情况下,SQL Server对915值的估计行数是37.5,如你在执行计划所见。事实上,非聚集索引查找运算符返回41条记录,这个估计还是很准的。

从这个例子里可以看出,在直方图里没有完全匹配值时,SQL Server也能进行基数预估。因此在直方图里会有RANGE_ROWS列和DISTINCT_RANGE_ROWS列。从上述解释可以看出,直方图并不难理解。直方图里很重要的一点是,SQL Server只为索引中第1个键列中的列值创建直方图。索引中的所有后续列,SQL Server在密度向量里存储。因此,在组合索引键里,第1列应该是选择性最高的那列(查询经常用到的)。

密度向量(density vector)

我们再来看看神秘的密度向量,看下非聚集索引IX_SalesOrderDetail_ProductID,这个索引只在ProductID列建立。但是每个非聚集索引,SQL Server在索引的页层也保存聚集键作为逻辑指针。当你定义了非唯一的非聚集索引,聚集键也是非聚集索引导航结构的一部分。表里的聚集键SalesOrderID是个组合列,包含SalesOrderID列和SalesOrderDetailID列。

这就是说我们的非唯一非聚集索引事实上包含ProductIDSalesOrderIDSalesOrderDetailID列。索引键是个组合键。同样SQL Server需要为其他列创建密度向量,因为只有第1列(ProductID)是直方图里有信息,这个在上一部分我们已经看过了。当你看用DBCC SHOW_STATISTICS命令的输出时,密度向量是第2个表信息。

SQL Server在这里存储选择率(selectivity),不同列组合的密度。例如,ProductID列的All density值是0.003759399,你可以用下列语句来验证下:

1 -- The "All Density" value for the column ProductID: 0,0037593984962406015
2 SELECT 1 / CAST(COUNT(DISTINCT ProductID) AS NUMERIC(18, 2)) FROM Sales.SalesOrderDetail
3 GO

对于ProductIDSalesOrderID组合列和ProductIDSalesOrderID,SalesOrderDetailID组合列的All density值分别是8.242868E-06和8.242868E-06。你可以用1除以2个组合列的唯一值来验证下。这里我们的记录是121317,这些聚集值(SalesOrderID,SalesOrderDetailID组成了聚集键)都是唯一的,我们可以计算下:1/121317=8.242867858585359e-6。现在的问题是,SQL Server如何使用这些密度向量值作参数预估呢?

我们来看一个查询:

1 -- SQL Server uses the reciprocal in a GROUP BY to make an estimation how
2 -- much rows are returned:
3 -- Estimation for the Stream Aggregate: 266
4 SELECT ProductID FROM Sales.SalesOrderDetail
5 GROUP BY ProductID
6 GO

我们在ProductID列进行GROUP BY操作。在这个情况下,SQL Server使用ProductID列的密度向量值来估计流聚合运算符的估计行数:1/0.003759399=266。在执行计划里流聚合运算符的属性信息里可以看到估计行数是266。

在T-SQL语句里,当你使用本地变量时,SQL Server不能嗅探任何参数值,只能退回使用密度向量来进行参数预估。我们看下面的查询。

 1 -- SQL Server also uses the Density Vector when we are working with local variables
 2 -- and equality predicates.
 3 -- SQL Server estimates for the Non-Clustered Index Seek 456 records: 121317 * 0,003759 = 456
 4 -- Every variable value gives us the same estimation.
 5
 6 -- Estimated: 456
 7 -- Actual: 3083
 8 DECLARE @i INT = 707
 9
10 SELECT * FROM Sales.SalesOrderDetail
11 WHERE ProductID = @i

SQL Server对筛选器运算符的估计行数是456(121317 * 0.003759399),但实际上我们只返回了44条记录。

当你的本地变量与大于小于组合时,SQL Server不再使用密度向量值,只假设30%的行返回。

1 -- When we are using an inequality predicate (">", "<") SQL Server assumes 30% for the
2 -- estimated number of rows.
3 -- Estimated: 36.395 (121.317/36.395 = 3,33)
4 -- Actual: 44
5 DECLARE @i INT = 719
6
7 SELECT * FROM Sales.SalesOrderDetail
8 WHERE ProductID > @i
9 GO

从执行计划里可以看到,SQL Server对此的估计行数是36395,因为这就是全表30%的记录数(12317 * 0.30)。

小结

在这篇文章里你学到了SQL Server如何使用内在的统计信息,对我们的查询执行参数预估。统计信息包含2个部分:直方图,还有密度向量。在直方图里,SQL Server可以非常容易的估计出查询的平均返回行数。因为SQL Server只存储组合索引键第1列的直方图信息,另外对于其他列的信息在密度向量里存储。还有我们学习了这2个统计信息在参数预估时如何使用的。

时间: 2024-11-09 06:12:51

统计信息内幕:直方图和密度向量的相关文章

第13/24周 直方图和密度向量

欢迎回到性能调优培训.今天我想详细谈下统计信息在SQL Server内部是如何呈现的.假设有这样的问题:执行计划里的某个运算符的估计行数是42,但你知道对于这个查询,42不是正确的答案.但是你怎么来解读统计信息来理解这个估计是从哪里来的?我们来谈论下直方图(Histogram)和密度向量(Density Vector). 直方图(Histogram) 首先我们来看下直方图.直方图的用途是用高效.压缩的方式存储列数据分布情况.每次当你在表上创建索引时(聚集/非聚集索引),SQL Server会为你

SQL Server 中统计信息直方图中对于没有覆盖到谓词预估以及预估策略的变化(SQL2012--&gt;SQL2014--&gt;SQL2016)

原文:SQL Server 中统计信息直方图中对于没有覆盖到谓词预估以及预估策略的变化(SQL2012-->SQL2014-->SQL2016) 本文出处:http://www.cnblogs.com/wy123/p/6770258.html 统计信息写过几篇了相关的文章了,感觉还是不过瘾,关于统计信息的问题,最近又踩坑了,该问题虽然不算很常见,但也比较有意思.相对SQL Server 2012,发现在新的SQL Server版本(2014,2016)中都有一些明显的变化,下文将对此进行粗浅的

MySQL 8.0 中统计信息直方图的尝试

直方图是表上某个字段在按照一定百分比和规律采样后的数据分布的一种描述,最重要的作用之一就是根据查询条件,预估符合条件的数据量,为sql执行计划的生成提供重要的依据. 在MySQL 8.0之前的版本中,MySQL仅有一个简单的统计信息却没有直方图,没有直方图的统计信息可以说是没有任何意义的. MySQL 8.0新特性之一就是开始支持统计信息的直方图,这个概念很早就提出来了,抽空具体尝试了一下使用方法. 之前写过MSSQL相关统计信息的一点东西,在原理上都是一致的, 照旧,直接上例子,造数据,创建一

使用过滤统计信息解决参数预估错误

参数预估是SQL Server里一颗隐藏的宝石.一般而言,参数预估指的是,在查询编译期间,查询优化器尝试找出在执行计划里从各个运算符平均返回的行数.这个估计用来驱动计划本身生成并选择正确的计划运算符——例如像Nested Loop, Merge Join,还是Hash Join的物理连接.当这些估计错误时,查询优化器就会选择错误的计划运算符,相信我——你的查询就会非常非常非常慢! 查询优化器使用称为统计信息对象作为参数预估.每次当你创建一个索引,SQL Server在下面也会创建一个统计对象.这

SQL Server 统计信息理解

前言 Sqlserver 查询是基于开销查询的,在首次生成执行计划时,是基于多阶段的分析优化才确定出较好的执行计划.而这些开销的基数估计,是根据统计信息来确定的.统计信息其实就是对表的各个字段的总体数据进行分段分布,数据库默认都会自动维护. 表和视图都有统计信息,统计信息对象是根据索引或表列的列表创建的.当某列第一次最为条件查询时,将创建单列的统计信息.当创建索引时,将创建同名的统计信息.索引中,统计信息只统计首列,因此索引除了按首列排序存储数据外,其统计信息也是按首列计算统计的,所以索引设置时

SQL SERVER的统计信息

可以看到,统计信息分为三部分内容,头信息,数据字段选择性及直方图. 2.1 头信息 列名 说明 Name 统计信息的名称. Updated 上次更新统计信息的日期何时间 Rows 预估表中的行数,不一定是精确的 Rows Sampled 统计信息的抽样行数,如果小于Rows,则说明直方图和密度结果是更加抽样行估计的 Steps 直方图中的梯级数.Number of steps in the histogram.每个梯级都跨越一个列值范围,后跟上限列值. 直方图梯级是根据统计信息中的第一个键列定义

SQL Server调优系列进阶篇(深入剖析统计信息)

前言 经过前几篇的分析,其实大体已经初窥到SQL Server统计信息的重要性了,所以本篇就要祭出这个神器了. 该篇内容会很长,坐好板凳,瓜子零食之类... 不废话,进正题 技术准备 数据库版本为SQL Server2008R2,利用微软的以前的案例库(Northwind)进行分析,部分内容也会应用微软的另一个案例库AdventureWorks 相信了解SQL Server的朋友,对这两个库都不会太陌生. 概念理解 关于SQL Server中的统计信息,在联机丛书中是这样解释的 查询优化的统计信

SQL Server-深入剖析统计信息

转自: http://www.cnblogs.com/zhijianliutang/p/4190669.html   概念理解 关于SQL Server中的统计信息,在联机丛书中是这样解释的 查询优化的统计信息是一些对象,这些对象包含与值在表或索引视图的一列或多列中的分布有关的统计信息.查询优化器使用这些统计信息来估计查询结果中的基数或行数.通过这些基数估计,查询优化器可以创建高质量的查询计划.例如,查询优化器可以使用基数估计选择索引查找运算符而不是耗费更多资源的索引扫描运算符,从而提高查询性能

SQL Server统计信息:问题和解决方式

在网上看到一篇介绍使用统计信息出现的问题已经解决方式,感觉写的很全面. 在自己看的过程中顺便做了翻译. 因为本人英文水平有限,可能中间有一些错误. 假设有哪里有问题欢迎大家批评指正.建议英文好的直接看原文:SQL Server Statistics: Problems and Solutions 正文: SQL Server统计信息协助查询优化器计算执行查询的最优方式. Holger描写叙述了常见的统计信息出错的事情,而且怎样改善 通常你不须要太操心运行SQL查询的方式.他们被传送到查询优化器,