Histogram of Oriented Gridients(HOG) 方向梯度直方图

Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉、模式识别领域很常用的一种描述图像局部纹理的特征。这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了。那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申。

1.分割图像

因为HOG是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的。原理很简单。从信息论角度讲,例如一幅640*480的图像,大概有30万个像素点,也就是说原始数据有30万维特征,如果直接做HOG的话,就算按照360度,分成360个bin,也没有表示这么大一幅图像的能力。从特征工程的角度看,一般来说,只有图像区域比较小的情况,基于统计原理的直方图对于该区域才有表达能力,如果图像区域比较大,那么两个完全不同的图像的HOG特征,也可能很相似。但是如果区域较小,这种可能性就很小。最后,把图像分割成很多区块,然后对每个区块计算HOG特征,这也包含了几何(位置)特性。例如,正面的人脸,左上部分的图像区块提取的HOG特征一般是和眼睛的HOG特征符合的。

接下来说HOG的图像分割策略,一般来说有overlap和non-overlap两种,如下图所示。overlap指的是分割出的区块(patch)互相交叠,有重合的区域。non-overlap指的是区块不交叠,没有重合的区域。这两种策略各有各的好处。

先说overlap,这种分割方式可以防止对一些物体的切割,还是以眼睛为例,如果分割的时候正好把眼睛从中间切割并且分到了两个patch中,提取完HOG特征之后,这会影响接下来的分类效果,但是如果两个patch之间overlap,那么至少在一个patch会有完整的眼睛。overlap的缺点是计算量大,因为重叠区域的像素需要重复计算。

再说non-overlap,缺点就是上面提到的,有时会将一个连续的物体切割开,得到不太“好”的HOG特征,优点是计算量小,尤其是与Pyramid(金字塔)结合时,这个优点更为明显。

2.计算每个区块的方向梯度直方图

将图像分割后,接下来就要计算每个patch的方向梯度直方图。步骤如下:

A.利用任意一种梯度算子,例如:sobel,laplacian等,对该patch进行卷积,计算得到每个像素点处的梯度方向和幅值。具体公式如下:

其中,Ix和Iy代表水平和垂直方向上的梯度值,M(x,y)代表梯度的幅度值,θ(x,y)代表梯度的方向。

B.将360度(2*PI)根据需要分割成若干个bin,例如:分割成12个bin,每个bin包含30度,整个直方图包含12维,即12个bin。然后根据每个像素点的梯度方向,利用双线性内插法将其幅值累加到直方图中。

C.(可选)将图像分割成更大的Block,并利用该Block对其中的每个小patch进行颜色、亮度的归一化,这一步主要是用来去掉光照、阴影等影响的,对于光照影响不剧烈的图像,例如很小区域内的字母,数字图像,可以不做这一步。而且论文中也提及了,这一步的对于最终分类准确率的影响也不大。

3.组成特征

将从每个patch中提取出的“小”HOG特征首尾相连,组合成一个大的一维向量,这就是最终的图像特征。可以将这个特征送到分类器中训练了。例如:有4*4=16个patch,每个patch提取12维的小HOG,那么最终特征的长度就是:16*12=192维。

4.一些引申

与pyramid相结合,即PHOG。PHOG指的是,对同一幅图像进行不同尺度的分割,然后计算每个尺度中patch的小HOG,最后将他们连接成一个很长的一维向量,作为特征。例如:对一幅512*512的图像先做3*3的分割,再做6*6的分割,最后做12*12的分割。接下来对分割出的patch计算小HOG,假设为12个bin即12维。那么就有9*12+36*12+144*12=2268维。需要注意的是,在将这些不同尺度上获得的小HOG连接起来时,必须先对其做归一化,因为3*3尺度中的HOG任意一维的数值很可能比12*12尺度中任意一维的数值大很多,这是因为patch的大小不同造成的。PHOG相对于传统HOG的优点,是可以检测到不同尺度的特征,表达能力更强。缺点是数据量和计算量都比HOG大了不少。

参考文献:

Navneet Dalal and Bill Triggs,《Histograms of Oriented Gradients for Human Detection》,2005

A. Bosch, A. Zisserman, and X. Munoz, 《Representing shape with a spatial pyramid kernel》,2007

时间: 2024-11-05 02:35:04

Histogram of Oriented Gridients(HOG) 方向梯度直方图的相关文章

(转)matlab练习程序(HOG方向梯度直方图)

matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测. 算法流程图如下(这篇论文上的): 下面我再结合自己的程序,表述一遍吧: 1.对原图像gamma校正,img=sqrt(img); 2.求图像竖直边缘,水平边缘,边缘强度,边缘斜率. 3.

HOG(方向梯度直方图)

结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測的特征描写叙述器.这项技术是用来计算局部图像梯度的方向信息的统计值.这样的方法跟边缘方向直方图(edge orientation histograms).尺度不变特征变换(scale-invariant feature transform descriptors)以及形状上下文方法( shape c

方向梯度直方图(HOG)和颜色直方图的一些比较

最近在学习视频检索领域的镜头分割方面的知识,发现常用的方法是直方图的方法,所以才专门有时间来学习下.查看到这两种直方图的时候,感觉有点接近,好像又不同,放在这做个比较.大部分还是百科的内容,不过对基本理解还是够了.OK,开始正文~ 首先,介绍下什么是直方图 在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量.又称质量分布图.是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况.一

方向梯度直方图(HOG)和颜色直方图的一些比較

近期在学习视频检索领域的镜头切割方面的知识,发现经常使用的方法是直方图的方法,所以才专门有时间来学习下.查看到这两种直方图的时候,感觉有点接近,好像又不同,放在这做个比較.大部分还是百科的内容,只是对基本理解还是够了.OK,開始正文~ 首先,介绍下什么是直方图 在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示(数据分布如:如物体的色彩分布.物体边缘梯度模板,以及表示目标位置的概率分布.),是一种二维统计图表,它的两个坐标各自是统计样本和该样本相应的某个属性的度量.又称

OpenCV学习之六: 使用方向梯度直方图估计图像旋转角度

在备份ltedecoder程序时,需要把此目录拷由到bak目录下,但decoder目录下有个大文件,不需要备份,还有日志问题,也不需要备份,如何实现呢?? 方法: cd /source-dir find . -name .snapshot -prune -o -print0 | cpio -pmd0 /dest-dir 解释: This command copies the contents of /source-dir to /dest-dir, but omits files and dir

Histogram of Oriented Gradients for Human Detection 翻译

用于人体检测的方向梯度直方图 Navneet Dalal,Bill Triggs 摘要 我们研究了视觉目标检测的特征集问题,并用线性SVM方法进行人体检测来测试,通过与当前的基于边缘和梯度的描述子进行实验对比,得出方向梯度直方图(Histograms of Oriented Gradient,HOG)描述子在行人检测方面表现更加突出.我们研究了计算过程中每一阶段的影响,得出小尺度梯度(fine-scale gradients).精细方向采样(fine orientation binning).粗

目标检测之hog(梯度方向直方图)---hog简介0

梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. HOG特征是一种局部区域描述符,它通过计算局部区域上的梯度方向直方图来构成人体特征,能够很好地描述人体的边缘.它对光照变

HOG特征经典分析汇总

网上很多这方面的内容,下面可以直接点击链接的.比如: 1  hog源码分析: 2  HOG特征描述算子: 3 OpenCV HOGDescriptor 参数图解: 4 利用Hog特征和SVM分类器进行行人检测: 5 opencv cvhog详解: 6 HOG特征-理解篇: 7 目标检测的图像特征提取之(一)HOG特征: 8 HOG特征: 9 Histogram of Oriented Gridients(HOG) 方向梯度直方图: 10 基于HOG特征的Adaboost行人检测. 版权声明:本文

SIFT 、Hog 、LBP 了解

SIFT.HOG.LBP,这三者都属于局部特征. 一.三者原理上的区别 1.SIFT:Scale-Invariant Feature Taransform,尺度不变特征变换. 尺度空间的极值检测:搜索所有尺度空间上的图像,通过高斯微分函数来识别潜在的对尺度和旋转鲁棒性较强的点. 特征点定位:在每个候选位置上,通过一个拟合精细模型(尺度空间DoG函数进行曲线拟合)来确定位置尺度,关键点的选取依据他们的稳定程度. 特征方向赋值:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向,后续的所有操