STM32学习笔记2(TIM模块定时器)

TIM模块定时器向上溢出 & 输出比较

首先我们必须肯定ST公司的实力,也承认STM32的确是一款非常不错的Cortex-M3核单片机,但是,他的手册实在是让人觉得无法理解,尤其是其中的TIM模块,没有条理可言,看了两天几乎还是不知所云,让人很是郁闷。同时配套的固件库的说明也很难和手册上的寄存器对应起来,研究起来非常费劲!功能强大倒是真的,但至少也应该配套一个让人看的明白的说明吧~~
两天时间研究了STM32定时器的最最基础的部分,把定时器最基础的两个功能实现了,余下的功能有待继续学习。
首先有一点需要注意:FWLib固件库目前的最新版应该是V2.0.x,V1.0.x版本固件库中,TIM1模块被独立出来,调用的函数与其他定时器不同;在V2.0系列版本中,取消了TIM1.h,所有的TIM模块统一调用TIM.h即可。网络上流传的各种代码有许多是基于v1版本的固件库,在移植到v2版本固件库时,需要做些修改。本文的所有程序都是基于V2.0固件库。

以下是定时器向上溢出示例代码:

C语言: TIM1模块产生向上溢出事件
//Step1.时钟设置:启动TIM1
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

//Step2.中断NVIC设置:允许中断,设置优先级
NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_IRQChannel;     //更新事件
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;    //抢占优先级0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;           //响应优先级1
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;              //允许中断
NVIC_Init(&NVIC_InitStructure);                              //写入设置

//Step3.TIM1模块设置
void TIM_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;

//TIM1 使用内部时钟
//TIM_InternalClockConfig(TIM1);

//TIM1基本设置
//设置预分频器分频系数71,即APB2=72M, TIM1_CLK=72/72=1MHz
//TIM_Period(TIM1_ARR)=1000,计数器向上计数到1000后产生更新事件,计数值归零
//向上计数模式
//TIM_RepetitionCounter(TIM1_RCR)=0,每次向上溢出都产生更新事件
TIM_BaseInitStructure.TIM_Period = 1000;
TIM_BaseInitStructure.TIM_Prescaler = 71;
TIM_BaseInitStructure.TIM_ClockDivision = 0;
TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);

//清中断,以免一启用中断后立即产生中断
TIM_ClearFlag(TIM1, TIM_FLAG_Update);
//使能TIM1中断源
TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);

//TIM1总开关:开启
TIM_Cmd(TIM1, ENABLE);
}

//Step4.中断服务子程序:
void TIM1_UP_IRQHandler(void)
{
GPIOC->ODR ^= (1<<4);                          //闪灯
TIM_ClearITPendingBit(TIM1, TIM_FLAG_Update); //清中断
}

下面是输出比较功能实现TIM1_CH1管脚输出指定频率的脉冲:

C语言: TIM1模块实现输出比较,自动翻转并触发中断
//Step1.启动TIM1,同时还要注意给相应功能管脚启动时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

//Step2. PA.8口设置为TIM1的OC1输出口
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);

//Step3.使能TIM1的输出比较匹配中断
NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQChannel;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

//Step4. TIM模块设置
void TIM_Configuration(void)
{
     TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
     TIM_OCInitTypeDef TIM_OCInitStructure;

//TIM1基本计数器设置
     TIM_BaseInitStructure.TIM_Period = 0xffff;                       //这里必须是65535
     TIM_BaseInitStructure.TIM_Prescaler = 71;                        //预分频71,即72分频,得1M
     TIM_BaseInitStructure.TIM_ClockDivision = 0;
     TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
     TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
     TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);

//TIM1_OC1模块设置
     TIM_OCStructInit(& TIM_OCInitStructure);
     TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;              //管脚输出模式:翻转
     TIM_OCInitStructure.TIM_Pulse = 2000;                            //翻转周期:2000个脉冲
     TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;    //使能TIM1_CH1通道
     TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;        //输出为正逻辑
     TIM_OC1Init(TIM1, &TIM_OCInitStructure);                         //写入配置

//清中断
     TIM_ClearFlag(TIM1, TIM_FLAG_CC1);

//TIM1中断源设置,开启相应通道的捕捉比较中断
     TIM_ITConfig(TIM1, TIM_IT_CC1, ENABLE);

//TIM1开启
     TIM_Cmd(TIM1, ENABLE);
     //通道输出使能
     TIM_CtrlPWMOutputs(TIM1, ENABLE);
}

Step5.中断服务子程序
void TIM1_CC_IRQHandler(void)
{
     u16 capture;
     if(TIM_GetITStatus(TIM1, TIM_IT_CC1) == SET)
     {
         TIM_ClearITPendingBit(TIM1, TIM_IT_CC1 );
         capture = TIM_GetCapture1(TIM1);
         TIM_SetCompare1(TIM1, capture + 2000);
         //这里解释下:
         //将TIM1_CCR1的值增加2000,使得下一个TIM事件也需要2000个脉冲,
         //另一种方式是清零脉冲计数器
         //TIM_SetCounter(TIM2,0x0000);
     }
}

关于TIM的操作,要注意的是STM32处理器因为低功耗的需要,各模块需要分别独立开启时钟,所以,一定不要忘记给用到的模块和管脚使能时钟,因为这个原因,浪费了我好多时间阿~~!

TIM模块产生PWM

这个是STM32的PWM输出模式,STM32的TIM1模块是增强型的定时器模块,天生就是为电机控制而生,可以产生3组6路PWM,同时每组2路PWM为互补,并可以带有死区,可以用来驱动H桥。
下面的代码,是利用TIM1模块的1、2通道产生一共4路PWM的代码例子,类似代码也可以参考ST的固件库中相应example
C语言: TIM1模块产生PWM,带死区
   
//Step1.开启TIM和相应端口时钟
//启动GPIO
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | \
                        RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,\
                        ENABLE);
//启动AFIO
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
//启动TIM1
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

//Step2. GPIO做相应设置,为AF输出
//PA.8/9口设置为TIM1的OC1输出口
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);

//PB.13/14口设置为TIM1_CH1N和TIM1_CH2N输出口
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);

//Step3. TIM模块初始化
void TIM_Configuration(void)
{
     TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
     TIM_OCInitTypeDef TIM_OCInitStructure;
     TIM_BDTRInitTypeDef TIM_BDTRInitStructure;

//TIM1基本计数器设置(设置PWM频率)
     //频率=TIM1_CLK/(ARR+1)
     TIM_BaseInitStructure.TIM_Period = 1000-1;
     TIM_BaseInitStructure.TIM_Prescaler = 72-1;
     TIM_BaseInitStructure.TIM_ClockDivision = 0;
     TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
     TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
     TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);
     //启用ARR的影子寄存器(直到产生更新事件才更改设置)
     TIM_ARRPreloadConfig(TIM1, ENABLE);

//TIM1_OC1模块设置(设置1通道占空比)
     TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
     TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
     TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
     TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
     TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
     TIM_OCInitStructure.TIM_Pulse = 120;
     TIM_OC1Init(TIM1, &TIM_OCInitStructure);
     //启用CCR1寄存器的影子寄存器(直到产生更新事件才更改设置)
     TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);

//TIM2_OC2模块设置(设置2通道占空比)
     TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
     TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
     TIM_OCInitStructure.TIM_Pulse = 680;
     TIM_OC2Init(TIM1, &TIM_OCInitStructure);
     //启用CCR2寄存器的影子寄存器(直到产生更新事件才更改设置)
     TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);
  
     //死区设置
     TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
     TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
     TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
     TIM_BDTRInitStructure.TIM_DeadTime = 0x90;   //这里调整死区大小0-0xff
     TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
     TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
     TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;
     TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);
  
     //TIM1开启
     TIM_Cmd(TIM1, ENABLE);
     //TIM1_OC通道输出PWM(一定要加)
     TIM_CtrlPWMOutputs(TIM1, ENABLE);

}

其实,PWM模块还可以有很多花样可以玩,比方在异常时(如CPU时钟有问题),可以紧急关闭输出,以免发生电路烧毁等严重事故

STM32学习笔记2(TIM模块定时器)

时间: 2024-10-11 19:47:30

STM32学习笔记2(TIM模块定时器)的相关文章

STM32学习笔记11(通用定时器作为输入捕获2)

通用定时器作为输入捕获的使用.我们将用 TIM5 的通道 1 (PA0)来做输入捕获,捕获 PA0 上高电平的脉宽(用 WK_UP 按键输入高电平),通过串口打印高电平脉宽时间 输入捕获简介 输入捕获模式可以用来测量脉冲宽度或者测量频率. STM32 的定时器,除了 TIM6 和 TIM7,其他定时器都有输入捕获功能.STM32 的输入捕获,简单的说就是通过检测 TIMx_CHx 上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的通道的

STM32学习笔记6(TIM通用模块生成PWM)

1.     TIMER输出PWM基本概念   脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术.简单一点,就是对脉冲宽度的控制.一般用来控制步进电机的速度等等. STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出. 1.1   PWM输出模式 S

STM32学习笔记3(TIM输入捕获)

PWM 输入捕获模式< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" /> 一.概念理解 PWM输入捕获模式时输入捕获模式的特例 1.每个定时器有四个输入通道IC1.IC2.IC3.IC4,且IC1 IC2一组,IC3 IC4一组,并可是设置管脚和寄存器的对应关系 2.两个TI输出映射了两个ICx信号 3.这两个ICx信号分别在相反的极性边沿有效 4.两个边沿

STM32学习笔记4(TIM32位定时器的实现)

关于STM32的CPU为32位,定时器却为16位的探讨 STM32的通用定时器可以实现很多功能,例如:定时计数.测量外部信号脉冲宽度.产生PWM波形.测量输入的PWM波形等.在所有这些操作中,定时器的位数主要影响两个参数,一个是定时或测量的精度,另一个是定时的时间长度.下面我们以一个列表看一下定时的精度和定时的长度有多少: 关于各个预分频器的作用请参考下图的右半部分: 从表中可以看出,在最高精度下(14ns)定时长度只有0.91ms,在精度为250ns(即4MHz)时定时长度可达16.38ms.

STM32学习笔记——OLED屏

STM32学习笔记--OLED屏 OLED屏的特点: 1.  模块有单色和双色可选,单色为纯蓝色,双色为黄蓝双色(本人选用双色): 2.  显示尺寸为0.96寸 3.  分辨率为128*64 4.  多种接口方式,该模块提供了总共 5 种接口包括: 6800. 8080 两种并行接口方式. 3线或4线的SPI接口,IIC接口方式 5.  不需要高压,直接接3.3V就可以工作:(可以与stm32的引脚直接相接) OLED图片: OLED引脚介绍: CS:OLED片选信号 RST:OLED复位端口

quick-cocos2d-x学习笔记【7】——定时器

定时器用的地方还是比较多的,游戏中的逻辑判断很多都是采用每帧执行.quick对于schedule的封装在scheduler这个lua文件中.如果是第一次接触quick的话,可能按照官方的api来写一个定时器被报错,提示schedule是一个nil值,这是因为其他的模块在初始化时都是被加载的,唯独这个scheduler没有载入,所以在使用的时候,第一件事是引入这个模块, local scheduler = require("framework.scheduler") 剩下的就可以看着ap

STM32学习笔记——USART串口(向原子哥和火哥学习)

一.USART简介 通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换.USART利用分数波特率发生器提供宽范围的波特率选择. STM32 的串口资源相当丰富的,功能也相当强劲.STM32F103ZET6 最多可提供 5 路串口,有分数波特率发生器,支持同步单向通信和半双工单线通信,支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作.它还允许多处理器通信.

STM32学习笔记(四)——串口控制LED(中断方式)

目录: 一.时钟使能,包括GPIO的时钟和串口的时钟使能 二.设置引脚复用映射 三.GPIO的初始化配置,注意要设置为复用模式 四.串口参数初始化配置 五.中断分组和中断优先级配置 六.设置串口中断类型并使能串口中断 七.编写中断服务函数函数名格式为函数名格式为 USARTxIRQHandler(x 对应串口号). 八.主函数的实现. 一.时钟使能,包括GPIO的时钟和串口的时钟使能 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); //

STM32学习笔记之一(初窥STM32)

怎么做好学习笔记? 答:自我感知-->学习知识-->归纳总结-->自我升华(真正属于自己的知识是,抛开书本,运用时,你还能记得的思想) 自我感知--看到知识概念,先自我感觉那应该是个什么东西(如:寄存器---寄存东西(数据)的地方嘛) 学习知识--有了自我感知后,就需要验证自己的感知是否正确,请记住,带着自己思想的学习是最高效的学习(如:寄存器---存什么东西呢?) 归纳总结--学习了大量知识后,就该汇总汇总了(如:寄存器---存数据(通用寄存器),存命令(PC),存地址(LR)) 自我