hive-调优笔记:JVM重用,并行执行、调整reducer个数的用处

解释:

1、JVM重用是hadoop调优参数的内容,对hive的性能具有非常大的影响,特别是对于很难避免小文件的场景或者task特别多的场景,这类场景大多数执行时间都很短。hadoop默认配置是使用派生JVM来执行map和reduce任务的,这是jvm的启动过程可能会造成相当大的开销,尤其是执行的job包含有成千上万个task任务的情况。

JVM重用可以使得JVM实例在同一个JOB中重新使用N次,N的值可以在Hadoop的mapre-site.xml文件中进行设置

mapred.job.reuse.jvm.num.tasks

也可在hive的执行设置:

set  mapred.job.reuse.jvm.num.tasks=10;

JVM的一个缺点是,开启JVM重用将会一直占用使用到的task插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡“的job中有几个reduce task 执行的时间要比其他reduce task消耗的时间多得多的话,那么保留的插槽就会一直空闲着却无法被其他的job使用,直到所有的task都结束了才会释放。

2、并行执行,意思是同步执行hive的多个阶段,hive在执行过程,将一个查询转化成一个或者多个阶段。某个特定的job可能包含众多的阶段,而这些阶段可能并非完全相互依赖的,也就是说可以并行执行的,这样可能使得整个job的执行时间缩短

hive执行开启:set hive.exec.parallel=true

3、调整reducer个数:

设置  hive.exec.reducers.bytes.per.reducer(默认为1GB),受hive.exec.reducers.max(默认为999)影响:

mapred.reduce.tasks = min ( 参数2,总输入数据量/参数1 )

三个优化的场景:

采用一个数据源多份处理的SQL来执行:

FROM TABLE1
  INSERT OVERWRITE LOCAL DIRECTORY ‘/data/data_table/data_table1.txt‘ SELECT 20140303, col1, col2, 2160701, COUNT(DISTINCT col) WHERE col3 <= 20140303 AND col3 >= 20140201 GROUP BY col1, col2
  INSERT OVERWRITE LOCAL DIRECTORY ‘/data/data_table/data_table2.txt‘ SELECT 20140302, col1, col2, 2160701, COUNT(DISTINCT col) WHERE col3 <= 20140302 AND col3 >= 20140131 GROUP BY col1, col2
  INSERT OVERWRITE LOCAL DIRECTORY ‘/data/data_table/data_table3.txt‘ SELECT 20140301, col1, col2, 2160701, COUNT(DISTINCT col) WHERE col3 <= 20140301 AND col3 >= 20140130 GROUP BY col1, col2
  INSERT OVERWRITE LOCAL DIRECTORY ‘/data/data_table/data_table4.txt‘ SELECT 20140228, col1, col2, 2160701, COUNT(DISTINCT col) WHERE col3 <= 20140228 AND col3 >= 20140129 GROUP BY col1, col2
  INSERT OVERWRITE LOCAL DIRECTORY ‘/data/data_table/data_table5.txt‘ SELECT 20140227, col1, col2, 2160701, COUNT(DISTINCT col) WHERE col3 <= 20140227 AND col3 >= 20140128 GROUP BY col1, col2
  INSERT OVERWRITE LOCAL DIRECTORY ‘/data/data_table/data_table6.txt‘ SELECT 20140226, col1, col2, 2160701, COUNT(DISTINCT col) WHERE col3 <= 20140226 AND col3 >= 20140127 GROUP BY col1, col2

………………省略

没设置前的,执行时间是450s

设置参数:

set mapred.job.reuse.jvm.num.tasks=20
   set hive.exec.reducers.bytes.per.reducer=150000000
   set hive.exec.parallel=true;

执行时间缩短到273s  ,合理利用一个参数调整,可以达到部分调优

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-13 00:05:15

hive-调优笔记:JVM重用,并行执行、调整reducer个数的用处的相关文章

Java性能调优笔记

Java性能调优笔记 调优步骤:衡量系统现状.设定调优目标.寻找性能瓶颈.性能调优.衡量是否到达目标(如果未到达目标,需重新寻找性能瓶颈).性能调优结束. 寻找性能瓶颈 性能瓶颈的表象:资源消耗过多.外部处理系统的性能不足.资源消耗不多但程序的响应速度却仍达不到要求. 资源消耗:CPU.文件IO.网络IO.内存. 外部处理系统的性能不足:所调用的其他系统提供的功能或数据库操作的响应速度不够. 资源消耗不多但程序的响应速度却仍达不到要求:程序代码运行效率不够高.未充分使用资源.程序结构不合理. C

Resin调优(JVM,性能参数,apache集成)

一.resin性参监控 1.在resin.conf文件下加入以下几段: <servlet-mapping servlet-class='com.caucho.servlets.ResinStatusServlet'> <url-pattern>/resin-status</url-pattern> <init enable="read"/> </servlet-mapping> 当访问http://域名/resin-statu

全面深度剖析Spark2--知识点,源码,调优,JVM,图计算,项目

全面深度剖析Spark2--知识点,源码,调优,JVM,图计算,项目 课程观看地址:http://www.xuetuwuyou.com/course/220 课程出自学途无忧网:http://www.xuetuwuyou.com 讲师:西瓜老师 课程共14章,316节,课程从Spark相关的各个技术点进行全方位剖析,最后结合实际项目:用户交互式行为分析系统.DMP用户画像系统,对Spark做了综合性的应用讲解,可以说一套在手,打遍天下无敌手! 第1章:Scala  任务1: java和scala

大数据技术之_30_JVM学习_01_JVM 位置+JVM 体系结构概览+堆体系结构概述+堆参数调优入门+JVM 的配置和优化+Tomcat 的配置和优化

1.JVM 位置2.JVM 体系结构概览3.堆体系结构概述4.堆参数调优入门5.JVM 的配置和优化6.Tomcat 的配置和优化 熟悉 JVM 架构与 GC 垃圾回收机制以及相应的 JVM 调优,有过在 Linux 系统下的调优经验. 淘宝的周志明<深入理解 Java 虚拟机>中说 JVM 的优化,其中 99% 优化的是堆,1% 优化的是方法区. 内地女歌手照片--李嘉欣,贴在桌面上. 1.JVM 位置 JVM 是运行在操作系统之上的,它与硬件没有直接的交互 2.JVM 体系结构概览 详解如

Spark性能调优之JVM调优

Spark性能调优之JVM调优 通过一张图让你明白以下四个问题 1.JVM GC机制,堆内存的组成                2.Spark的调优为什么会和JVM的调优会有关联?--因为Scala也是基于JVM运行的语言                3.Spark中OOM产生的原因                4.如何在JVM这个层面上来对Spark进行调优 补充:                Spark程序运行时--JVM堆内存分配比例 RDD缓存的数据(0.6)    默认 对象_

性能调优:JVM内存诊断工具

转载请注明出处:http://blog.csdn.net/supera_li/article/details/45315241 性能调优系列的其他篇幅,请查阅. 性能调优:CPU消耗分析 性能调优:IO消耗分析 性能调优:消耗分析思维导图 性能调优:JVM内存诊断工具 *号代表是重点工具. 这部分总结了内存诊断的相关工具.具体的工具使用,我会在这篇中增加子链接. //TODO

Hive调优实战

Hive优化总结 ---by 食人花 优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本.这是这一年来,项目组所有成员宝贵的经验总结.   长期观察hadoop处理数据的过程,有几个显著的特征: 1.不怕数据多,就怕数据倾斜. 2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的.map reduce作业初始化的时间是比较长的. 3.对su

Hive调优-萌贝树母婴无骗子

1 Fetch 抓取 Hive调优-萌贝树母婴无骗子,Fectch 抓取是指对某些情况下的查询不必使用 MapReduce 计算将 hive.fetch.task.conversion 设置成 more,在全局查找.字段查找.limit查找等都不走 MapReduce2 本地模式 Hive调优-萌贝树母婴无骗子,多数的 Hadoop Job 是需要 Hadoop 提供的完整的可扩展性来处理大数据集的,不过,有时 Hive 的输入数据量是非常小的,在这种情况下,为查询触发执行任务消耗的时间可能会比

二、hive调优

下面是hive使用过程中一些调优策略 一.fetch抓取 ? Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算.例如:SELECT * FROM employees;在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台.? 在hive-default.xml.template文件中hive.fetch.task.conversion默认是more,老版本hive默认是minimal,该属性修改为more以后,在全局查