【基础练习】【线性DP+离散化】codevs1105 过河题解

题目描述 Description

在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。

题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。

输入描述 Input Description

输入第一行有一个正整数L(1<=L<=109),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1<=S<=T<=10,1<=M<=100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。

输出描述 Output Description

输出只包括一个整数,表示青蛙过河最少需要踩到的石子数。

样例输入 Sample Input

10

2 3 5

2 3 5 6 7

样例输出 Sample Output

2

数据范围及提示 Data Size & Hint

数据规模

对于30%的数据,L<=10000;

对于全部的数据,L<=109

方程显然:

f[i] = min { f[i - x] } + stone[i];  x∈[S, T]
ans = min {f[j]};  j∈[L, L+T-1]

既然数据这么大,显然要离散化

一开始离散的t,但是怎么也过不了 不知是不是杨志灿老师的课件有误。codevs上也有说t的,不知为什么;

引用codevs上最小公倍数做法的解释:

只要求出1--10里面任意两个数的最小公倍数,然后取最大的,可以证明当两石块之间的距离大于它的时候,那么大于它的部分的每一个点都可以通过这两个数的某一种组合跳到,所以当两个石块间的距离大于这个最小公倍数,那么就把它们的距离缩小到这个最小公倍数.

路径压缩后,就可以DP求出最小踩石子个数。设f[i]表示到达第i个位置最小踩多少个石子.

则f[i]=min(f[i-j]+d[i])(1<=i<=l+t)(s<=j<=t),d[i]表示第i个位置是否有石子.

最后的答案就是在l to l+t 之间找最小。

虽然不知道怎么回事,但就是这个道理= =

上代码,我要抓紧写作业去

——春来遍是桃花水,不辨仙源何处寻。

版权声明:转载请注明出处 [ametake版权所有]http://blog.csdn.net/ametake欢迎来看

时间: 2024-11-08 10:19:21

【基础练习】【线性DP+离散化】codevs1105 过河题解的相关文章

(DP 线性DP) leetcode 221. Maximal Square

Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area. Example: Input: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 Output: 4 =============================================================== 这是一个D

Codeforces 176B (线性DP+字符串)

题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成新串.问经过K次变形后,与目标串相同的变形方案数.mod 1000000007. 解题思路: 奇葩的字符串DP.照着别人的题解写的,解释不出原理是什么. 首先统计出经过1次变形,就能和目标串相同的中间产物串(包含源串)的个数cnt.len表示源串长度,那么len-cnt就表示和目标串不同的个数. 用

POJ - 3666 Making the Grade(dp+离散化)

Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ

动态规划——线性dp

我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模型,例如最长上升子序列(LIS).最长公共子序列(LCS).最大子序列和等,那么首先我们从这几个经典的问题出发开始对线性dp的探索. 首先我们来看最长上升子序列问题. 这个问题基于这样一个背景,对于含有n个元素的集合S = {a1.a2.a3……an},对于S的一个子序列S‘ = {ai,aj,ak

POJ 2479-Maximum sum(线性dp)

Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Description Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below: Your task is to calculate d(A). Input The input consists o

LCS 线性DP入门

C - Common Subsequence A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a s

uva 11584 Partitioning by Palindromes 线性dp

// uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串的数目 // // f[i] = min(f[i],f[j-1] + 1(j到i是回文串)) // // 这道题还是挺简单的,继续练 #include <algorithm> #include <bitset> #include <cassert> #include <

uva 11552 Fewest Flops 线性dp

// uva 11552 Fewest Flops // // 二维线性dp // // 首先,在该块必须是相同的来信.首先记录每块有很多种书 // 称为是counts[i]; // // 订购f[i][j]它代表前i字母j为结尾的最小分块数 // // 假设第i块的開始字母与第i-1块的结束字母同样 // f[i][j] = min(f[i][j],f[i-1][k] + counts[i] - 1); // // 否则 // // f[i][j] = min(f[i][j],f[i-1][k

poj3267——线性dp

poj3267——线性dp The Cow Lexicon Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8458   Accepted: 3993 Description Few know that the cows have their own dictionary with W (1 ≤ W ≤ 600) words, each containing no more 25 of the characters 'a'