POJ 3207

还是那句话,做2SAT题时,找出矛盾点基本上可解了。这道题也是这样

题意是说给出一个圆上的 n 个点(0~n-1编号),然后在指定的 m 对点之间各连一条线(可以在圆内,也可以在圆外,可以是曲线,这点真心坑爹,开始一直木有看明白),然后问你是否能使这些线都不相交

当两条线在同一边会有交点时,即会有矛盾,建图加边。

对于那些没有交点即没有矛盾的边,直接忽略就好,因为边的含义是“必须”。

  1 #include <iostream>
  2 #include <cstring>
  3 #include <cstdio>
  4 using namespace std;
  5
  6 const int MAXN=1050;
  7 const int MAXM=1000000;
  8 int n,m;
  9 struct d{
 10     int u,v;
 11 }sv[505];
 12 int dfn[MAXN],low[MAXN],st[MAXN],tot,stop,pat,indx,belong[MAXN];
 13 bool stack[MAXN];
 14 struct e{
 15     int u,v;
 16     int next;
 17 }edge[MAXM];
 18 int head[MAXN];
 19
 20 void addedge(int u,int v){
 21     edge[tot].u=u;
 22     edge[tot].v=v;
 23     edge[tot].next=head[u];
 24     head[u]=tot++;
 25 }
 26
 27 void exch(int &x,int &y){
 28     if(x>y){
 29         int tmp=y;
 30         y=x;
 31         x=tmp;
 32     }
 33 }
 34
 35 bool sure(int i,int k){
 36     int u=sv[k].u;
 37     int v=sv[k].v;
 38     int p=sv[i].u;
 39     int q=sv[i].v;
 40     if(p>=u&&p<=v&&q>=u&&q<=v)
 41     return false;
 42     if(p>=v) return false;
 43     if(q<=u) return false;
 44     if(p<=u&&q>=v) return false;
 45     return true;
 46 }
 47
 48 void tarjan(int u){
 49     dfn[u]=low[u]=++indx;
 50     stack[u]=true;
 51     st[stop++]=u;
 52     int v;
 53     for(int e=head[u];e!=-1;e=edge[e].next){
 54         v=edge[e].v;
 55         if(dfn[v]==0){
 56             tarjan(v);
 57             low[u]=min(low[u],low[v]);
 58         }
 59         else if(stack[v]){
 60             low[u]=min(low[u],dfn[v]);
 61         }
 62     }
 63     if(dfn[u]==low[u]){
 64         pat++;
 65         do{
 66             v=st[--stop];
 67             belong[v]=pat;
 68             stack[v]=false;
 69         }while(u!=v);
 70     }
 71 }
 72
 73 int main(){
 74     int u,v;
 75     while(scanf("%d%d",&n,&m)!=EOF){
 76         tot=indx=pat=stop=0;
 77         for(int i=0;i<m*2;i++){
 78             dfn[i]=low[i]=belong[i]=0;
 79             stack[i]=false; head[i]=-1;
 80         }
 81
 82         for(int i=0;i<m;i++){
 83             scanf("%d%d",&sv[i].u,&sv[i].v);
 84             exch(sv[i].u,sv[i].v);
 85             if(i>0){
 86                 for(int k=0;k<i;k++){
 87                     if(sure(i,k)){
 88                         addedge(2*i,2*k+1);
 89                         addedge(2*k,2*i+1);
 90                         addedge(2*i+1,2*k);
 91                         addedge(2*k+1,2*i);
 92                     }
 93                 }
 94             }
 95         }
 96
 97         for(int i=0;i<2*m;i++)
 98         if(dfn[i]==0)
 99         tarjan(i);
100
101         bool flag=true;
102         for(int i=0;i<m;i++){
103             if(belong[i*2]==belong[2*i+1]){
104                 flag=false;
105                 printf("the evil panda is lying again\n");
106                 break;
107             }
108         }
109         if(flag)
110         printf("panda is telling the truth...\n");
111     }
112     return 0;
113 }

POJ 3207

时间: 2024-11-03 15:25:01

POJ 3207的相关文章

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick

简单的看了2-sat……似乎还是挺神奇的东西……等大致刷完几道题再来写总结吧! 而这道题……算是2-sat的超级入门题了吧 不过题目大意也是醉了:圆上顺序排列n个点,现要在一些点间连边,规定边只能在圆内或圆外,求有没有可能不相交 .一开始想的是嗷嗷嗷,圆上两个点的连线怎么可能有什么在圆外在圆内之分,不都是弦么?后来才知道……原来两个点的连线不是直线可以使曲线…… 判定是否相交很简单吧……看成是一条直线上四个点,那么如果e1.a<e2.a<e1.b<e2.b就相交啦…… 都说是热身题没多难

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick (2-SAT)

题目地址:POJ 3207 找好矛盾关系,矛盾关系是(2,5)和(3,6)这两个只能一个在外边,一个在里边,利用这个矛盾关系来建图. 可以用在外边和里边来当1和0,最后判断每对是否出现矛盾. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #inc

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2 - sat啊)

题目链接:http://poj.org/problem?id=3207 Description liympanda, one of Ikki's friend, likes playing games with Ikki. Today after minesweeping with Ikki and winning so many times, he is tired of such easy games and wants to play another game with Ikki. liy

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2-sat)

POJ 3207 Ikki's Story IV - Panda's Trick 题目链接 题意:一个圆上顺序n个点,然后有m组连线,连接两点,要求这两点可以往圆内或圆外,问是否能构造出使得满足所有线段不相交 思路:2-sat,判断相交的建边,一个在内,一个在外,然后跑一下2-sat即可 代码: #include <cstdio> #include <cstring> #include <cstdlib> #include <vector> #include

[2-SAT] poj 3207 Ikki&#39;s Story IV - Panda&#39;s Trick

题目链接: http://poj.org/problem?id=3207 Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8063   Accepted: 2969 Description liympanda, one of Ikki's friend, likes playing games with Ikki. Today after minesweep

[2-SAT] poj 3207 Ikki&amp;#39;s Story IV - Panda&amp;#39;s Trick

题目链接: http://poj.org/problem? id=3207 Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8063   Accepted: 2969 Description liympanda, one of Ikki's friend, likes playing games with Ikki. Today after mineswee

POJ 3207 Ikki&amp;#39;s Story IV - Panda&amp;#39;s Trick(2-sat)

POJ 3207 Ikki's Story IV - Panda's Trick id=3207" target="_blank" style="">题目链接 题意:一个圆上顺序n个点,然后有m组连线,连接两点,要求这两点能够往圆内或圆外.问能否构造出使得满足全部线段不相交 思路:2-sat,推断相交的建边,一个在内.一个在外,然后跑一下2-sat就可以 代码: #include <cstdio> #include <cstring

poj 3207 Ikki&#39;s Story IV - Panda&#39;s Trick【2-set】

题目:poj 3207 Ikki's Story IV - Panda's Trick 题意:给出一个有(0-n-1)组成的圆,然后连接上面的一些点,可以选择从圆内部连接或者内部连接,然后问你所有的都不想交可不可行 分析:对于每条Link,要么在圆外,要么在圆内,且不可同时满足, 只能两者取一,判断这M条Link是否合法,也就是M条Link不冲突, 这就是典型的2-sat问题了. 将每条Link i 看做一个点,如果Link在圆内, 则选做i ,如果在圆外, 则选做i'.对于两条线(i,j) ,

POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2-sat判解存在性)

题意:平面上,一个圆,圆的边上按顺时针放着n个点.现在要连m条边,比如a,b,那么a到b可以从圆的内部连接,也可以从圆的外部连接.给你的信息中,每个点最多只会连接的一条边.问能不能连接这m条边,使这些边都不相交. 算比较裸的题目了,关键找到如何判断两对点交不交叉的关系就好 #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<vector&g