快速幂解法

快速幂

  求a的b次幂,如3^999次幂,最最普通的做法就是嵌套循环,不断累乘,最后得出结果,而快速幂算法可以更快的实现。

题目:

  计算a^b = ?.

分析:

  把b换成二进制,用位运算计算结果。

代码:

#include<cstdio>#include<iostream>#include<cstring>#include<string>using namespace std;

int main(){    int a,b;    while(cin>>a>>b){        //calculate  a^b        long long ans = 1;        while(b){            if( b & 1 ){        //equals to b % 2 == 1                ans *= a;            }            a*=a;            b/=2;        }        cout<<ans<<endl;    }return 0;}
时间: 2024-10-12 19:08:26

快速幂解法的相关文章

HDU 1005矩阵快速幂解法 循环节解法

循环节解法: 对于公式 f[n] = A * f[n-1] + B * f[n-2]; 后者只有7 * 7 = 49 种可能,为什么这么说,因为对于f[n-1] 或者 f[n-2] 的取值只有 0,1,2,3,4,5,6 这7个数,A,B又是固定的,所以就只有49种可能值了.由该关系式得知每一项只与前两项发生关系,所以当连续的两项在前面出现过,由于公式不变,那么后面得到的一定是跟前面相重复的.所以这个时候循环节就出现了,注意循环节并不一定会是开始的 1,1:但1,1一定可以作为一个循环节,只不过

qscoj 128 喵哈哈村的魔法源泉(2)(模仿快速幂,好题)

喵哈哈村的魔法源泉(2) 发布时间: 2017年5月9日 20:59   最后更新: 2017年5月9日 21:00   时间限制: 1000ms   内存限制: 128M 描述 喵哈哈村有一个魔法源泉,里面有无穷无尽的力量. 但是前提是你能答出这样一个问题: 给你a,b,p,让你输出a*b%p的值. 输入 本题包含若干组测试数据.第一行三个整数a,b,p. 满足:0<=a,b,p<=1e18 输出 输出答案 样例输入1 复制 10 1 7 样例输出1 3题目链接:http://qscoj.c

蟠桃记《快速幂》(两种解法)

这道题比较容易所以解法也并不唯一.但是我们主要通过这道题讲解快速幂的算法. 题目如下: 喜欢西游记的同学肯定都知道悟空偷吃蟠桃的故事,你们一定都觉得这猴子太闹腾了,其实你们是有所不知:悟空是在研究一个数学问题! 什么问题?他研究的问题是蟠桃一共有多少个! 不过,到最后,他还是没能解决这个难题,呵呵^-^ 当时的情况是这样的: 第一天悟空吃掉桃子总数一半多一个,第二天又将剩下的桃子吃掉一半多一个,以后每天吃掉前一天剩下的一半多一个,到第n天准备吃的时候只剩下一个桃子.聪明的你,请帮悟空算一下,他第

快速乘、快速幂(矩阵快速幂)

当mod一个大数p的时候,还有进行乘法的时候可能会爆long long的时候,就用快速乘或者快速幂. 参考:http://www.cnblogs.com/whywhy/p/5066730.html 先上模板: 快速乘: ll multi(ll a,ll b,ll m) { ll ans=0; while(b) { if(b&1) (ans+=a) %= m; (a=a*2) %= m; b/=2; } return ans; } 快速幂: ll pow_mod(ll a,ll b,ll m) {

【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)

2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种细胞最初的形态是"长条形",一端是头,一端是尾,中间是躯干.细胞内部含有一列密码(你可以认为它是这种细胞的DNA).密码是一个长度为n的数字串,且仅含有1~9这9种数字,沿着细胞的躯干从头到尾排列着. 首先,细胞会经历一次分裂.细胞将沿躯干方向分裂成若干个球体,躯干将退化成丝状物,连接着相

快速幂介绍及其模板

1.数的快速幂问题: 所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余).在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法.快速幂实际上是求解形如:an%b这种形式.其中a和n可能会很大. 普通解法时间复杂度为O(n),而快速幂则是O(logn),其主体思想如下:将n分解为2进制,n =a0*20+a1*21...+at*2t-1.然后就可与分开计算了,例如:39=1*20+0*21+0*22+1*23.注

快速幂与矩阵快速幂

快速幂的思路: 仍然是与2 分法有关的算法:(很多O(logN)的算法都是二分法啊...) 但快速幂有个前题,就是数据类型必须满足结合律 对于一般的解法: A^8 = A * A * A * A * A * A * A * A 总共需要7次乘法运算: 将其平均分解: A^8 = (A * A * A * A) * (A * A * A * A) = (A * A * A * A) ^ 2 这样我们就只需要4次乘法运算了: 我们还可以将其再分解: A^6 = [(A * A) * (A * A)]

POJ 3150 Cellular Automaton --矩阵快速幂及优化

题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有讲,大概为: [1 1 0 .. 0 1] [1 1 1 .. .. 0] ... [1 1 .. .. .. 1]  的循环矩阵,可以证明,循环矩阵的乘积还是循环矩阵,且循环矩阵的性质: a[i][j] = a[i-1][j-1] (循环的) ,所以,我们每次矩阵相乘只需要算出第一行,余下的不需要

多校第九场:贪心+矩阵快速幂中间优化+线性递推&amp;线段树递推

HDU 4968 Improving the GPA 思路:贪心的搞吧!比赛的时候想了好久,然后才发现了点规律,然后乱搞1A. 因为贪心嘛!大的情况就是刚开始每个人的分数都是最大的最小值,即绩点4.0的最低分数85,然后最后一个数设为剩余的分数,然后如果小于60就从第一个分数补到这个分数来,然后最后一个分数还小于60,那就用第二个补--依次往下搞,那时我也不知道这样就搞出答案了,我还没证明这个对不对呢,哈哈. 小的情况:小的情况就是先假设每个人都是绩点最小的最大分数,即绩点2.0的最大分数69,