大数据时代:深入浅出微软数据挖掘算法总结连载

本系列文章主要是涉及内容为微软商业智能(BI)中一系列数据挖掘算法的总结,其中涵盖各个算法的特点、应用场景、准确性验证以及结果预测操作等,所采用的案例数据库为微软的官方数据仓库案例(AdventureWorksDW2008R2),数据库基于Microsoft SQL Server 2008,主要涉及DM模块,目录整理如下:

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 决策树分析算法)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft Naive Bayes 算法)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(结果预测篇)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法——结果预算+下期彩票预测篇)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 关联规则分析算法)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 顺序分析和聚类分析算法)(待完成)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 神经网络分析算法)(待完成)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 线性回归分析算法)(待完成)

后续文章整理中....希望对研究BI的院友们有所帮助,权作交流学习之用......

时间: 2024-10-30 02:52:58

大数据时代:深入浅出微软数据挖掘算法总结连载的相关文章

大数据时代下的数据挖掘与可视化展现

全世界每天都有几十亿人使用计算机.平板电脑.手机和其它数字设备产生海量数据.在这个各个行业和领域都已经被数据给渗透,数据已成为非常重要的生产因素的大数据时代,对于大数据处理和大数据挖掘将意味着新一波的生产率不断增长和消费者盈余浪潮的到来. 在大数据时代下,从头至尾我们都脱离不了数据挖掘.有人把数据比喻为蕴藏能量的煤矿.煤炭按照性质有焦煤.无烟煤.肥煤.贫煤等分类,而露天煤矿.深山煤矿的挖掘成本又不一样.与此类似,大数据并不在“大”,而在于“有用”.价值含量.挖掘成本比数量更为重要. 什么是数据挖

大数据时代的精准数据挖掘——使用R语言

老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一世界500强公司核心部门担任高级主管负责数据建模和分析工作,在实践中攻克统计建模和数据分析难题无数,数据处理与分析科学精准,在实际应用中取得良好的效果. Gino老师担任数据分析培训师多年,探索出一套以实例讲解带动统计原理理解和软件操作熟悉的方法,授课的学生能迅速理解统计原理并使用统计软件独立开展数

微软数据挖掘算法:Microsoft 线性回归分析算法(11)

前言 此篇为微软系列挖掘算法的最后一篇了,完整该篇之后,微软在商业智能这块提供的一系列挖掘算法我们就算总结完成了,在此系列中涵盖了微软在商业智能(BI)模块系统所能提供的所有挖掘算法,当然此框架完全可以自己扩充,可以自定义挖掘算法,不过目前此系列中还不涉及,只涉及微软提供的算法,当然这些算法已经基本涵盖大部分的商业数据挖掘的应用场景,也就是说熟练了这些算法大部分的应用场景都能游刃有余的解决,每篇算法总结包含:算法原理.算法特点.应用场景以及具体的操作详细步骤.为了方便阅读,我还特定整理一篇目录:

微软数据挖掘算法:Microsoft顺序分析和聚类分析算法(8)

前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,本篇我们将要总结的算法为:Microsoft顺序分析和聚类分析算法,此算法为上一篇中的关联规则分析算法的一个延伸,为关联规则分析算法所形成的种类进行了更细粒度的挖掘,挖掘出不同种类内部的事例间的顺序原则,进而用以引导用户进行消费. 应用场景介绍 Microsoft顺序分析和聚类分析算法,根据

微软数据挖掘算法:Microsoft 神经网络分析算法原理篇(9)

前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,在开始Microsoft 神经网络分析算法之前,本篇我们先将神经网络分析算法做一个简单介绍,此算法由于其本身的复杂性,所以我打算在开始之前先将算法原理做一个简单的总结,因为本身该算法就隶属于高等数学的研究范畴,我们对算法的推断和验证过程不做研究,只介绍该算法特点以及应用场景,且个人技术能力有

微软数据挖掘算法:Microsoft 神经网络分析算法(10)

前言 有段时间没有进行我们的微软数据挖掘算法系列了,最近手头有点忙,鉴于上一篇的神经网络分析算法原理篇后,本篇将是一个实操篇,当然前面我们总结了其它的微软一系列算法,为了方便大家阅读,我特地整理了一篇目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,我打算将微软商业智能中在DM这块所用到的算法全部集中在这个系列中,每篇包含简要算法原理.算法特点.应用场景以及具体的操作详细步骤,基本能涵盖大部分的商业数据挖掘的应用场景,有兴趣的童鞋可以点击查阅.本篇我们将要总结的算法为:Microsoft

大数据时代的数据分析与挖掘

目前,无论是在社会用人单位或者是个体方面都会涉及与处理相关数据信息的问题,社会大众在应用数据信息之际也被社会诸多的数据信息所围绕,即使现代社会数据信息的发展情况较为良好.也让社会大众更为信服,然而在社会大众对大数据的印象观念中,数据形式的发展已经超过了他们所预想的.数据总量已经超过社会大众所理解的范畴,应当如何正确.有效地处理该部分数据信息已经变为现代社会大众共同面对的问题,需求人们谨慎地对待. 一.实施数据分析的方法 正确地对数据进行分析过程已经作为大数据时代对待信息量极大的数据处理的关键性环

(原创)大数据时代:数据分析之基于微软案例数据库数据挖掘案例知识点总结

随着大数据时代的到来,数据挖掘的重要性就变得显而易见,几种作为最低层的简单的数据挖掘算法,现在利用微软数据案例库做一个简要总结. 应用场景介绍 其实数据挖掘应用的场景无处不在,很多的环境都会应用到数据挖掘,之前我们没有应用是因为还没有学会利用数据,或者说还没有体会到数据的重要性,现在随着IT行业中大数据时代的到来,让我一起去拥抱大数据,闲言少叙,此处我们就列举一个最简单的场景,一个销售厂商根据以往的销售记录单,通过数据挖掘技术预测出一份可能会购买该厂商产品的客户名单,我相信这也是很多销售机构想要

LinkedIn高级分析师王益:大数据时代的理想主义和现实主义(图灵访谈)

转自:http://www.ituring.com.cn/article/75445 王益,LinkedIn高级分析师.他曾在腾讯担任广告算法和策略的技术总监,在此期间他发明了并行机器学习系统“孔雀”,它可以从数十亿的用户行为或文本数据中学习到上百万的潜在主题,该系统被应用在腾讯可计算广告业务中.在此之前,他在Google担任软件工程师,并开发了一个分布式机器学习工具,这个工具让他获得了2008年的“Google APAC 创新奖”.王益曾在清华大学和香港城市大学学习,并取得了清华大学机器学习和