利用回溯法求解背包问题

  最近看完了利用回溯法求八皇后问题,最后成功求解到92种解法,然后在看利用贪心求解背包问题,突然想到其实也可以利用回溯法求解背包问题,本质上回溯法是一个穷举的方式在求.

  回溯法求解出的结果肯定是正确的,这也可以验证自己所写的贪心算法的正确性.

问题描诉:

  设定Wmax为最大重量,W[](0~n-1)为编号0~n-1的货物重量,V[](0~n-1)为其价值,x[]为其中解,

  在wn=ΣXi*Wi<Wmax的条件下,求Vmax=ΣXi*Vi.

代码如下:

//全局变量最大价值int maxvalue=0;//当前最优解
int an_x[10];

//w为重量数组//va为价值数组//wmax为最大的重量//n为货物数量//n_w未加入当前货物的重量//x为一个解集合//value为未加入当前货物价值的价值//index当前货物的索引void get_max_sample(int *w,int *va,int wmax,int n,int n_w,int *x,int value,int index)
{
    int i;
    if(index==10)
    {
        if(maxvalue<value)
        {
            for(i=0;i<10;i++)
                an_x[i]=x[i];
            maxvalue=value;
        }
        return;
    }
    for(i=0;i<2;i++)
    {
        x[index]=i;
        if(n_w+i*w[index]<wmax)
        {
            get_max_sample(w,va,wmax,n,n_w+i*w[index],x,value+i*va[index],index+1);
        }
        x[index]=0;
    }
}//求解实例//get_max_sample(w,va,20,10,0,x,0,0);//

时间复杂度分析:

  由于每一个递归的执行的次数为2次,所以其时间复杂度为:T(2n),所以在n在较小的情况下使用这种方法是可行的,像求解的实例货物数目是10个,T=210=1024,而实际运算的次数肯定是小于这个值.



贪心算法的求解:

  

时间: 2024-12-23 16:01:35

利用回溯法求解背包问题的相关文章

回溯法——求解0-1背包问题

以前研究过一个简单的N皇后问题,对回溯法也有了个模糊的认识,大致理解就是:先一直做某件事,当完成某个条件时或者是触犯某个条件时,再返回到最近的一个类似还原点的地方. 在用回溯法求解0-1背包问题的时候,主要遇到三个相对难解决的问题:1,什么是界限函数:2,什么时候用它:3,回溯到哪儿. 什么是界限函数? 如下图: 当我们身在一棵搜索空间树中,站在一个K点举棋不定的时候,我们可以用它估算如果我们继续向下走,我们走完本段路会获得的总价值.假设我们现在有一个最大解,当我用界限函数算出一个价值后和我当前

迷宫问题(MazePath)的求解——利用回溯法(backtracking)

迷宫问题(MazePath)的求解--利用回溯法(backtracking) 1. 迷宫问题的提法 迷宫问题是典型的图的搜索问题. 假设一个迷宫,只有一个入口和一个出口.如果从迷宫的入口到达出口,途中不出现行进方向错误,则得到一条最佳路线. 为此,用一个二维数组maze[m][p]来表示迷宫. (1)当数组元素maze[i][j]=1 (0≤i≤m-1,1≤j≤p-1),表示该位置是墙壁,不能通行. (2)当数组元素maze[i][j]=0 (0≤i≤m-1,1≤j≤p-1),表示该位置是通路,

回溯法求解数独算法(C语言)

没有对输入的待解数独进行一般性验证(同一行.一列以及同一个小九宫格都不能出现重复数字) 算法利用回溯的思想: 从第一个空白处开始,找到其候选解(排除同行.同列以及同一小九宫格的所有出现过的数字,剩下未出现的数字都是候选解)的第一个值填入数独. 对第二个空白执行第一步(前面所填入的数字对此空白处有影响). 当出现某个空白的候选解个数为0时,就开始回溯,找到第一个候选解多于一个的,将其在使用的候选解设为不可取(本程序取值为-1),找到其下一个候选解,继续上面的步骤! 直到所有空白处填满,运算完成,输

回溯法-01背包问题之一:递归模式

一.回溯法 回溯法是一个既带有系统性又带有跳跃性的搜索算法.它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树.算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解.如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯.否则,进入该子树,继续按深度优先的策略进行搜索. 运用回溯法解题通常包含以下三个步骤: · 针对所给问题,定义问题的解空间: · 确定易于搜索的解空间结构: · 以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函

拉丁矩阵问题 利用回溯法的C++实现方案

这两天正好在赶算法设计的作业,这里把做的几个需要写代码的题放上来,方便以后查看. 1.题目要求 2.算法思想 这个题目基本思想是 利用回溯法,对于 m 行 n 列, 本质上就是一个二维数组, 我们可以将问题的解写成 x[1],x[2],x[3] - x[m*n], 那么对于每个点 x[i] 的取值实际上是 [1, n], 套用回溯法的算法框架,这里的 约束条件 ,就是同行,同列 没有相同的取值, 并且这里没有优化目标,只要类似 N后问题找出所有解就可以了. 另外,回溯时候的边界条件,需要特别注意

回溯法-01背包问题之二:顺序执行模式

上文已讲述了回溯法以及01背包问题的原理,本文讲述如何顺序执行解决01背包问题以及通过模板模式重构软件. 一.顺序执行流程图 图1无剪枝函数的01背包问题顺序执行算法流程图 图2 有剪枝函数的01背包问题顺序执行算法流程图 无剪枝函数是通用的深度遍历算法,为了减少搜索深度可通过剪枝函数处理完全不可能的分枝.与递归方案的区别主要表现在i>=n后需要"回溯",即用后进先出的方式将物品逐个拿出. 二.执行代码 递归与顺序执行方法仅仅是实现方法Backtracking(int i)不同,

回溯法解背包问题分析

先亮出题目: 一,背包问题 及 回溯法解其问题的伪代码 二,赋值后的具体实例 三,如何看懂伪代码 (1)真正了解回溯法的核心思想 我总结的回溯法解题步骤: <1>先找出第一个解 <2>回溯 (2)回溯法核心思想 + 伪代码 + 图9-5 树结构来分析 四,伪代码代入值解析 核心:先找到第一个解,再回溯. cw=0;//背包当前重量 初始值 cp=0;//背包当前价值 初始值 k=1;//第一个物品 n=8;//共8个物品 W=110 第一步:得出第1个可行解: (1)k=1 k=1

贪心法求解背包问题

#include<stdio.h> struct A{ double w; double v; double xingjiabi; }a[100],p; void QuickSort(A a[],int numsize) { int i=0,j=numsize-1; A p=a[0]; if(numsize>1) { while(i<j) { for(;j>i;j--) if(a[j].xingjiabi<p.xingjiabi) { a[i]=a[j]; break;

回溯法求解八皇后问题---(初步、未优化)

首先介绍一下回溯算法: 定义来自<百度百科>......名字着很高大上,实际上就是试探法,逐步试错找到最终的可行解. 重要的一点是解空间通常是在搜索可行解过程中动态产生的,所以程序中通常利用到递归的算法,如后面介绍的八皇后问题.这点区别与于前段时间所写的模拟退火算法,模拟退火是首先确定解空间,然后以一定的概率接受当前发现的次优解,从而有更大的可能避免局部最优而得到全局最优. 简单介绍一下八皇后问题: 在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或