Win32 - 线程同步

线程的同步可分用户模式的线程同步和内核对象的线程同步两大类。

用户模式中线程的同步方法主要有原子访问和临界区等方法。其特点是同步速度特别快,适合于对线程运行速度有严格要求的场合。

内核对象的线程同步则主要由事件等待定时器信号量以及信号灯等内核对象构成。由于这种同步机制使用了内核对象,使用时必须将线程从用户模式切换到内核模式,而这种转换一般要耗费近千个CPU周期,因此同步速度较慢,但在适用性上却要远优于用户模式的线程同步方式。

在WIN32中,同步机制主要有以下几种:

  (1)事件(Event);

  (2)信号量(semaphore);

  (3)互斥量(mutex);

  (4)临界区(Critical section)。

临界区

  临界区(Critical Section)是一段独占对某些共享资源访问的代码,在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。

  临界区在使用时以CRITICAL_SECTION结构对象保护共享资源,并分别用EnterCriticalSection()和LeaveCriticalSection()函数去标识和释放一个临界区。所用到的CRITICAL_SECTION结构对象必须经过InitializeCriticalSection()的初始化后才能使用,而且必须确保所有线程中的任何试图访问此共享资源的代码都处在此临界区的保护之下。否则临界区将不会起到应有的作用,共享资源依然有被破坏的可能。

全局变量

  因为进程中的所有线程均可以访问所有的全局变量,因而全局变量成为Win32多线程通信的最简单方式。

,实际上,这是一种应该避免的方法,因为:

  (1)当主线程必须使自己与ThreadFunc函数的完成运行实现同步时,它并没有使自己进入睡眠状态。由于主线程没有进入睡眠状态,因此操作系统继续为它调度C P U时间,这就要占用其他线程的宝贵时间周期;

  (2)当主线程的优先级高于执行ThreadFunc函数的线程时,就会发生globalFlag永远不能被赋值为true的情况。因为在这种情况下,系统决不会将任何时间片分配给ThreadFunc线程。

事件

  事件(Event)是WIN32提供的最灵活的线程间同步方式,事件可以处于激发状态(signaled or true)或未激发状态(unsignal or false)。根据状态变迁方式的不同,事件可分为两类:

  (1)手动设置:这种对象只可能用程序手动设置,在需要该事件或者事件发生时,采用SetEvent及ResetEvent来进行设置。

  (2)自动恢复:一旦事件发生并被处理后,自动恢复到没有事件状态,不需要再次设置。

  使用"事件"机制应注意以下事项:

  (1)如果跨进程访问事件,必须对事件命名,在对事件命名的时候,要注意不要与系统命名空间中的其它全局命名对象冲突;

  (2)事件是否要自动恢复;

  (3)事件的初始状态设置。

  由于event对象属于内核对象,故进程B可以调用OpenEvent函数通过对象的名字获得进程A中event对象的句柄,然后将这个句柄用于ResetEvent、SetEvent和WaitForMultipleObjects等函数中。此法可以实现一个进程的线程控制另一进程中线程的运行,例如:

HANDLE hEvent=OpenEvent(EVENT_ALL_ACCESS,true,"MyEvent");

ResetEvent(hEvent);

信号量

  信号量是维护0到指定最大值之间的同步对象。信号量状态在其计数大于0时是有信号的,而其计数是0时是无信号的。信号量对象在控制上可以支持有限数量共享资源的访问。

  信号量的特点和用途可用下列几句话定义:

  (1)如果当前资源的数量大于0,则信号量有效;

  (2)如果当前资源数量是0,则信号量无效;

  (3)系统决不允许当前资源的数量为负值;

  (4)当前资源数量决不能大于最大资源数量。

  创建信号量

  HANDLE CreateSemaphore (

 PSECURITY_ATTRIBUTE psa,

   LONG lInitialCount, //开始时可供使用的资源数

   LONG lMaximumCount, //最大资源数

PCTSTR pszName);

  释放信号量  

通过调用ReleaseSemaphore函数,线程就能够对信标的当前资源数量进行递增,该函数原型为:

BOOL WINAPI ReleaseSemaphore(

 HANDLE hSemaphore,

 LONG lReleaseCount, //信号量的当前资源数增加lReleaseCount

 LPLONG lpPreviousCount

);  

 

 打开信号量  

和其他核心对象一样,信号量也可以通过名字跨进程访问,打开信号量的API为:

HANDLE OpenSemaphore (

 DWORD fdwAccess,

 BOOL bInherithandle,

 PCTSTR pszName

);

 互锁访问

  当必须以原子操作方式来修改单个值时,互锁访问函数是相当有用的。所谓原子访问,是指线程在访问资源时能够确保所有其他线程都不在同一时间内访问相同的资源。

  请看下列代码:

int globalVar = 0;

DWORD WINAPI ThreadFunc1(LPVOID n)

{

 globalVar++;

 return 0;

}

DWORD WINAPI ThreadFunc2(LPVOID n)

{

 globalVar++;

 return 0;

}

  运行ThreadFunc1和ThreadFunc2线程,结果是不可预料的,因为globalVar++并不对应着一条机器指令。我们可以使用InterlockedExchangeAdd函数解决这个问题:

int globalVar = 0;

DWORD WINAPI ThreadFunc1(LPVOID n)

{

 InterlockedExchangeAdd(&globalVar,1);

 return 0;

}

DWORD WINAPI ThreadFunc2(LPVOID n)

{

 InterlockedExchangeAdd(&globalVar,1);

 return 0;

}

  InterlockedExchangeAdd保证对变量globalVar的访问具有"原子性"。互锁访问的控制速度非常快,调用一个互锁函数的CPU周期通常小于50,不需要进行用户方式与内核方式的切换(该切换通常需要运行1000个CPU周期)。

  互锁访问函数的缺点在于其只能对单一变量进行原子访问,如果要访问的资源比较复杂,仍要使用临界区或互斥。

可等待定时器  

可等待定时器是在某个时间或按规定的间隔时间发出自己的信号通知的内核对象。它们通常用来在某个时间执行某个操作。

  创建可等待定时器

        HANDLE CreateWaitableTimer(

           PSECURITY_ATTRISUTES psa,

           BOOL fManualReset,//人工重置或自动重置定时器

PCTSTR pszName);

  设置可等待定时器  

可等待定时器对象在非激活状态下被创建,程序员应调用 SetWaitableTimer函数来界定定时器在何时被激活:

BOOL SetWaitableTimer(

           HANDLE hTimer, //要设置的定时器

           const LARGE_INTEGER *pDueTime, //指明定时器第一次激活的时间

           LONG lPeriod, //指明此后定时器应该间隔多长时间激活一次

           PTIMERAPCROUTINE pfnCompletionRoutine,

           PVOID PvArgToCompletionRoutine,

BOOL fResume);

  取消可等待定时器

        BOOL Cancel WaitableTimer(

              HANDLE hTimer //要取消的定时器

);  

 

打开可等待定时器 

作为一种内核对象,WaitableTimer也可以被其他进程以名字打开:

HANDLE OpenWaitableTimer (

              DWORD fdwAccess,

              BOOL bInherithandle,

              PCTSTR pszName

);

  

Win32 - 线程同步,布布扣,bubuko.com

时间: 2024-10-01 05:55:59

Win32 - 线程同步的相关文章

Win32线程同步内核对象的比较

X86处理器上用户层到内核层的转换要花费600个CPU指令周期 临界区(关键代码段)不是内核对象 但当访问被占用的资源时会使用内核资源 功能同互斥但不可跨进程 (以上引用自:http://www.dewen.org/q/9561) WIN32内核对象都是由HANDLE操控 信号量(Semaphore) wait函数族使访问计数递减 当且仅当访问计数0时无信号 ReleaseSemaphore递增访问计数 互斥(Mutex) 有且仅有1个访问计数的信号量(二元信号量binary semaphore

win32多线程 (二)线程同步之临界区 (critical sections)

所谓critical sections 意指一小块“用来处理一份被共享之资源”的程序代码.你可能必须在程序的许多地方处理这一块可共享的资源.所有这些程序代码可以被同一个critical  section 保护起来.为了阻止问题发生,一次只能有一个线程获准进入critical  section 中.critical section 并不是核心对象.使用方法: CRITICAL_SECTION g_section; 1:初始化 InitializeCriticalSection(&g_section

使用Win32 API实现生产者消费者线程同步

使用win32 API创建线程,创建信号量用于线程的同步 创建信号量 语法例如以下 HANDLE semophore; semophore = CreateSemaphore(lpSemaphoreAttributes, lInitialCount, lMaximumCount, lpName); CreateSemophore函数的原型例如以下: HANDLE WINAPI CreateSemaphore( _In_opt_ LPSECURITY_ATTRIBUTES lpSemaphoreA

【WIN32进阶之路】:线程同步技术纲要

前面博客讲了互斥量(MUTEX)和关键段(CRITICAL SECTION)的使用,想来总觉不妥,就如盲人摸象一般,窥其一脚而言象,难免以偏概全,追加一篇博客查遗补漏. win32下的线程同步技术分为用户模式下的线程同步和用内核对象进行线程同步两大类. 用户模式下的线程同步和用内核对象进行线程同步有以下的明显差异: 1.用户模式下的线程同步不需要进入操作系统核心,直接在用户模式就可以进行操作. 2.用内核对象进行线程同步需要进入操作系统核心,用户模式切换至核心模式大约花费1000个CPU周期.

第三章--Win32程序的执行单元(部分概念及代码讲解)(中-线程同步

学习<Windows程序设计>记录 概念贴士: 1. 同步可以保证在一个时间内只有一个线程对其共享资源有控制权.PS:共享资源包括全局变量.公共数据成员或者句柄等. 2. 临界区内核对象和时间内核对象可以很好地用于多线程同步和它们之间的通信. 3. 线程同步必要性:当多个线程在同一个进程中执行时,可能有不止一个线程同时执行同一段代码,访问同一段内存中的数据.多个线程同时读取共享数据没有问题,但是如果同时读写,情况就不同,也许会产生极大的错误.(如:程序CountErr).解决同步问题,就是保证

Win32线程安全问题.同步函数

线程安全问题.同步函数 一丶简介什么是线程安全 通过上面几讲.我们知道了线程怎么创建.线程切换的原理(CONTEXT结构) 每个线程在切换的时候都有自己的堆栈. 但是这样会有安全问题. 为什么?  我们每个线程都使用自己的局部变量这个是没有安全问题的. 但是线程可能会使用全局变量.这样很有可能会产生安全问题.为什么是很有可能. 1.有全局变量的情况下.有可能会有安全问题. 2.对全局变量进行写操作.则一定有安全问题. 上面两个条件都具备,线程才是不安全的. 为什么是不安全的. 试想一下. 如果这

C#编程总结(三)线程同步

C#编程总结(三)线程同步 在应用程序中使用多个线程的一个好处是每个线程都可以异步执行.对于 Windows 应用程序,耗时的任务可以在后台执行,而使应用程序窗口和控件保持响应.对于服务器应用程序,多线程处理提供了用不同线程处理每个传入请求的能力.否则,在完全满足前一个请求之前,将无法处理每个新请求.然而,线程的异步特性意味着必须协调对资源(如文件句柄.网络连接和内存)的访问.否则,两个或更多的线程可能在同一时间访问相同的资源,而每个线程都不知道其他线程的操作. "如果觉得有用,请帮顶! 如果有

线程同步--线程间通信

一.线程同步 线程的同步方法跟其他系统下类似,我们可以用原子操作,可以用 mutex,lock 等. iOS 的原子操作函数是以 OSAtomic 开头的,比如:OSAtomicAdd32, OSAtomicOr32 等等.这些函数可以直接使用,因为它 们是原子操作. iOS 中的 mutex 对应的是 NSLock,它遵循 NSLooking 协议,我们可以使用 lock, tryLock, lockBeforeData:来加锁,用 unLock 来解锁.使用示例: BOOL moreToDo

C#多线程:深入了解线程同步lock,Monitor,Mutex,同步事件和等待句柄(中)

本篇继续介绍WaitHandler类及其子类 Mutex,ManualResetEvent,AutoResetEvent的用法..NET中线程同步的方式多的让人看了眼花缭乱,究竟该怎么去理解呢?其实,我们抛开.NET环境看线程同步,无非是执行两种操作:一是互斥/加锁,目的是保证临界区代码操作的"原子性":另一种是信号灯操作,目的是保证多个线程按照一定顺序执行,如生产者线程要先于消费者线程执行..NET中线程同步的类无非是对这两种方式的封装,目的归根结底都可以归结为实现互斥/ 加锁或者是