Hadoop YARN同时支持内存和CPU两种资源的调度,本文介绍如何配置YARN对内存和CPU的使用。
YARN作为一个资源调度器,应该考虑到集群里面每一台机子的计算资源,然后根据application申请的资源进行分配Container。Container是YARN里面资源分配的基本单位,具有一定的内存以及CPU资源。
在YARN集群中,平衡内存、CPU、磁盘的资源的很重要的,根据经验,每两个container使用一块磁盘以及一个CPU核的时候可以使集群的资源得到一个比较好的利用。
内存配置
关于内存相关的配置可以参考hortonwork公司的文档Determine HDP Memory Configuration Settings来配置你的集群。
YARN以及MAPREDUCE所有可用的内存资源应该要除去系统运行需要的以及其他的hadoop的一些程序,总共保留的内存=系统内存+HBASE内存。
可以参考下面的表格确定应该保留的内存:
每台机子内存
系统需要的内存
HBase需要的内存
每台机子内存 |
系统需要的内存 |
hbase需要的内存 |
4GB | 1GB | 1GB |
8GB | 2GB | 2GB |
16GB | 2GB | 2GB |
24GB | 4GB | 4GB |
48GB | 6GB | 6GB |
64GB | 8GB | 8GB |
72GB | 8GB | 8GB |
96GB | 12GB | 12GB |
128GB | 24GB | 24GB |
255GB | 32GB | 32GB |
512GB | 64GB | 64GB |
计算每台机子最多可以拥有多少个container,可以使用下面的公式:
containers = min (2*CORES, 1.8*DISKS, (Total available RAM) / MIN_CONTAINER_SIZE)
说明:
CORES
为机器CPU核数DISKS
为机器上挂载的磁盘个数Total available RAM
为机器总内存MIN_CONTAINER_SIZE
是指container最小的容量大小,这需要根据具体情况去设置,可以参考下面的表格:
每台机子可用的RAM | container最小值 |
小于4GB | 256MB |
4GB到8GB之间 | 512MB |
8GB到24GB之间 | 1024MB |
大于24GB | 2048MB |
每个container的平均使用内存大小计算方式为:
RAM-per-container = max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))
通过上面的计算,YARN以及MAPREDUCE可以这样配置:
配置文件 | 配置设置 | 默认值 | 计算值 |
yarn-site.xml | yarn.nodemanager.resource.memory-mb | 8192 MB | = containers * RAM-per-container |
yarn-site.xml | yarn.scheduler.minimum-allocation-mb | 1024MB | = RAM-per-container |
yarn-site.xml | yarn.scheduler.maximum-allocation-mb | 8192 MB | = containers * RAM-per-container |
yarn-site.xml(check) | yarn.app.mapreduce.am.resource.mb | 1536 MB | = 2 * RAM-per-container |
yarn-site.xml(check) | yarn.app.mapreduce.am.command-opts | -Xmx1024m | = 0.8 * 2 * RAM-per-container |
mapred-site.xml | mapreduce.map.memory.mb | 1024 MB | = RAM-per-container |
mapred-site.xml | mapreduce.reduce.memory.mb | 1024 MB | = 2 * RAM-per-container |
mapred-site.xml | mapreduce.map.java.opts | = 0.8 * RAM-per-container | |
mapred-site.xml | mapreduce.reduce.java.opts | = 0.8 * 2 * RAM-per-container |
举个例子:对于128G内存、32核CPU的机器,挂载了7个磁盘,根据上面的说明,系统保留内存为24G,不适应HBase情况下,系统剩余可用内存为104G,计算containers值如下:
containers = min (2*32, 1.8* 7 , (128-24)/2) = min (64, 12.6 , 51) = 13
计算RAM-per-container值如下:
RAM-per-container = max (2, (124-24)/13) = max (2, 8) = 8
你也可以使用脚本yarn-utils.py来计算上面的值:
#!/usr/bin/env python import optparse from pprint import pprint import logging import sys import math import ast ‘‘‘ Reserved for OS + DN + NM, Map: Memory => Reservation ‘‘‘ reservedStack = { 4:1, 8:2, 16:2, 24:4, 48:6, 64:8, 72:8, 96:12, 128:24, 256:32, 512:64} ‘‘‘ Reserved for HBase. Map: Memory => Reservation ‘‘‘ reservedHBase = {4:1, 8:1, 16:2, 24:4, 48:8, 64:8, 72:8, 96:16, 128:24, 256:32, 512:64} GB = 1024 def getMinContainerSize(memory): if (memory <= 4): return 256 elif (memory <= 8): return 512 elif (memory <= 24): return 1024 else: return 2048 pass def getReservedStackMemory(memory): if (reservedStack.has_key(memory)): return reservedStack[memory] if (memory <= 4): ret = 1 elif (memory >= 512): ret = 64 else: ret = 1 return ret def getReservedHBaseMem(memory): if (reservedHBase.has_key(memory)): return reservedHBase[memory] if (memory <= 4): ret = 1 elif (memory >= 512): ret = 64 else: ret = 2 return ret def main(): log = logging.getLogger(__name__) out_hdlr = logging.StreamHandler(sys.stdout) out_hdlr.setFormatter(logging.Formatter(‘ %(message)s‘)) out_hdlr.setLevel(logging.INFO) log.addHandler(out_hdlr) log.setLevel(logging.INFO) parser = optparse.OptionParser() memory = 0 cores = 0 disks = 0 hbaseEnabled = True parser.add_option(‘-c‘, ‘--cores‘, default = 16, help = ‘Number of cores on each host‘) parser.add_option(‘-m‘, ‘--memory‘, default = 64, help = ‘Amount of Memory on each host in GB‘) parser.add_option(‘-d‘, ‘--disks‘, default = 4, help = ‘Number of disks on each host‘) parser.add_option(‘-k‘, ‘--hbase‘, default = "True", help = ‘True if HBase is installed, False is not‘) (options, args) = parser.parse_args() cores = int (options.cores) memory = int (options.memory) disks = int (options.disks) hbaseEnabled = ast.literal_eval(options.hbase) log.info("Using cores=" + str(cores) + " memory=" + str(memory) + "GB" + " disks=" + str(disks) + " hbase=" + str(hbaseEnabled)) minContainerSize = getMinContainerSize(memory) reservedStackMemory = getReservedStackMemory(memory) reservedHBaseMemory = 0 if (hbaseEnabled): reservedHBaseMemory = getReservedHBaseMem(memory) reservedMem = reservedStackMemory + reservedHBaseMemory usableMem = memory - reservedMem memory -= (reservedMem) if (memory < 2): memory = 2 reservedMem = max(0, memory - reservedMem) memory *= GB containers = int (min(2 * cores, min(math.ceil(1.8 * float(disks)), memory/minContainerSize))) if (containers <= 2): containers = 3 log.info("Profile: cores=" + str(cores) + " memory=" + str(memory) + "MB" + " reserved=" + str(reservedMem) + "GB" + " usableMem=" + str(usableMem) + "GB" + " disks=" + str(disks)) container_ram = abs(memory/containers) if (container_ram > GB): container_ram = int(math.floor(container_ram / 512)) * 512 log.info("Num Container=" + str(containers)) log.info("Container Ram=" + str(container_ram) + "MB") log.info("Used Ram=" + str(int (containers*container_ram/float(GB))) + "GB") log.info("Unused Ram=" + str(reservedMem) + "GB") log.info("yarn.scheduler.minimum-allocation-mb=" + str(container_ram)) log.info("yarn.scheduler.maximum-allocation-mb=" + str(containers*container_ram)) log.info("yarn.nodemanager.resource.memory-mb=" + str(containers*container_ram)) map_memory = container_ram reduce_memory = 2*container_ram if (container_ram <= 2048) else container_ram am_memory = max(map_memory, reduce_memory) log.info("mapreduce.map.memory.mb=" + str(map_memory)) log.info("mapreduce.map.java.opts=-Xmx" + str(int(0.8 * map_memory)) +"m") log.info("mapreduce.reduce.memory.mb=" + str(reduce_memory)) log.info("mapreduce.reduce.java.opts=-Xmx" + str(int(0.8 * reduce_memory)) + "m") log.info("yarn.app.mapreduce.am.resource.mb=" + str(am_memory)) log.info("yarn.app.mapreduce.am.command-opts=-Xmx" + str(int(0.8*am_memory)) + "m") log.info("mapreduce.task.io.sort.mb=" + str(int(0.4 * map_memory))) pass if __name__ == ‘__main__‘: try: main() except(KeyboardInterrupt, EOFError): print("\nAborting ... Keyboard Interrupt.") sys.exit(1)
执行下面命令:
python yarn-utils.py -c 32 -m 128 -d 7 -k False
返回结果如下:
Using cores=32 memory=128GB disks=7 hbase=False Profile: cores=32 memory=106496MB reserved=24GB usableMem=104GB disks=7 Num Container=13 Container Ram=8192MB Used Ram=104GB Unused Ram=24GB yarn.scheduler.minimum-allocation-mb=8192 yarn.scheduler.maximum-allocation-mb=106496 yarn.nodemanager.resource.memory-mb=106496 mapreduce.map.memory.mb=8192 mapreduce.map.java.opts=-Xmx6553m mapreduce.reduce.memory.mb=8192 mapreduce.reduce.java.opts=-Xmx6553m yarn.app.mapreduce.am.resource.mb=8192 yarn.app.mapreduce.am.command-opts=-Xmx6553m mapreduce.task.io.sort.mb=3276
这样的话,每个container内存为8G,似乎有点多,我更愿意根据集群使用情况任务将其调整为2G内存,则集群中下面的参数配置值如下:
配置文件 | 配置设置 | 计算值 |
yarn-site.xml | yarn.nodemanager.resource.memory-mb | = 52 * 2 =104 G |
yarn-site.xml | yarn.scheduler.minimum-allocation-mb | = 2G |
yarn-site.xml | yarn.scheduler.maximum-allocation-mb | = 52 * 2 = 104G |
yarn-site.xml (check) | yarn.app.mapreduce.am.resource.mb | = 2 * 2=4G |
yarn-site.xml (check) | yarn.app.mapreduce.am.command-opts | = 0.8 * 2 * 2=3.2G |
mapred-site.xml | mapreduce.map.memory.mb | = 2G |
mapred-site.xml | mapreduce.reduce.memory.mb | = 2 * 2=4G |
mapred-site.xml | mapreduce.map.java.opts | = 0.8 * 2=1.6G |
mapred-site.xml | mapreduce.reduce.java.opts | = 0.8 * 2 * 2=3.2G |
对应的xml配置为:
<property> <name>yarn.nodemanager.resource.memory-mb</name> <value>106496</value> </property> <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>2048</value> </property> <property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>106496</value> </property> <property> <name>yarn.app.mapreduce.am.resource.mb</name> <value>4096</value> </property> <property> <name>yarn.app.mapreduce.am.command-opts</name> <value>-Xmx3276m</value> </property>
另外,还有一下几个参数:
yarn.nodemanager.vmem-pmem-ratio
:任务每使用1MB物理内存,最多可使用虚拟内存量,默认是2.1。yarn.nodemanager.pmem-check-enabled
:是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。yarn.nodemanager.vmem-pmem-ratio
:是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。
第一个参数的意思是当一个map任务总共分配的物理内存为2G的时候,该任务的container最多内分配的堆内存为1.6G,可以分配的虚拟内存上限为2*2.1=4.2G。另外,照这样算下去,每个节点上YARN可以启动的Map数为104/2=52个。
CPU配置
YARN中目前的CPU被划分成虚拟CPU(CPU virtual Core),这里的虚拟CPU是YARN自己引入的概念,初衷是,考虑到不同节点的CPU性能可能不同,每个CPU具有的计算能力也是不一样的,比如某个物理CPU的计算能力可能是另外一个物理CPU的2倍,这时候,你可以通过为第一个物理CPU多配置几个虚拟CPU弥补这种差异。用户提交作业时,可以指定每个任务需要的虚拟CPU个数。
在YARN中,CPU相关配置参数如下:
yarn.nodemanager.resource.cpu-vcores
:表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设值为与物理CPU核数数目相同。如果你的节点CPU核数不够8个,则需要调减小这个值,而YARN不会智能的探测节点的物理CPU总数。yarn.scheduler.minimum-allocation-vcores
:单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数少于该数,则该对应的值改为这个数。yarn.scheduler.maximum-allocation-vcores
:单个任务可申请的最多虚拟CPU个数,默认是32。
对于一个CPU核数较多的集群来说,上面的默认配置显然是不合适的,在我的测试集群中,4个节点每个机器CPU核数为31,留一个给操作系统,可以配置为:
<property> <name>yarn.nodemanager.resource.cpu-vcores</name> <value>31</value> </property> <property> <name>yarn.scheduler.maximum-allocation-vcores</name> <value>124</value> </property>
转自 http://blog.javachen.com/2015/06/05/yarn-memory-and-cpu-configuration.html