2014ACM/ICPC亚洲区域赛牡丹江站现场赛-I ( ZOJ 3827 ) Information Entropy

Information Entropy


Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge



Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream.
Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when
it occurs.

Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication".
We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

Named after Boltzmann‘s H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2,
..., xn}
 and probability mass functionP(X) as:

H(X)=E(?ln(P(x)))

Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

H(X)=?∑i=1nP(xi)log b(P(xi))

Where b is the base of the logarithm used. Common values of b are 2, Euler‘s number e, and 10. The unit of entropy is bit for b = 2, nat for b = e,
and dit (or digit) for b = 10 respectively.

In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

0log b(0)=limp→0+plog b(p)

Your task is to calculate the entropy of a finite sample with N values.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

In the next line, there are N non-negative integers P1P2, .., PNPi means the probability
of the i-th value in percentage and the sum of Pi will be 100.

Output

For each test case, output the entropy in the corresponding unit.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

3
3 bit
25 25 50
7 nat
1 2 4 8 16 32 37
10 dit
10 10 10 10 10 10 10 10 10 10

Sample Output

1.500000000000
1.480810832465
1.000000000000

Author: ZHOU, Yuchen

Source: The 2014 ACM-ICPC Asia Mudanjiang Regional Contest

题目链接:Information Entropy

解题思路:又是一道签到题!!!当时想多了,居然纠结在积分上,果真是想多了,根本不需要什么技术,就是按照那个数学公式算。又学到了个小方法,表示对数可以用log(m, n)= log(n) / log(m). 还有就是e = exp(1)。还有就是注意当p = 0时,函数值为0。

AC代码:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define INF 0x7fffffff

#define e exp(1.0)

int main()
{
    #ifdef sxk
        freopen("in.txt","r",stdin);
    #endif
    int T, n, p;
    string s;
    scanf("%d",&T);
    while(T--)
    {
        double ans = 0;
        scanf("%d",&n);
        cin>>s;
        if(s == "bit"){
            for(int i=0; i<n; i++){
                scanf("%d", &p);
                if(p)
                    ans += -(p/100.0*log(p/100.0)/log(2));
            }
        }
        else if(s == "nat"){
            for(int i=0; i<n; i++){
                scanf("%d", &p);
                if(p)
                    ans += -(p/100.0*log(p/100.0)/log(e));
            }
        }
        else{
            for(int i=0; i<n; i++){
                scanf("%d", &p);
                if(p)
                    ans += -(p/100.0*log(p/100.0)/log(10));
            }
        }
        printf("%.14lf\n",ans);
    }
    return 0;
}
时间: 2024-10-06 15:02:05

2014ACM/ICPC亚洲区域赛牡丹江站现场赛-I ( ZOJ 3827 ) Information Entropy的相关文章

2014ACM/ICPC亚洲区域赛牡丹江站现场赛-A ( ZOJ 3819 ) Average Score

Average Score Time Limit: 2 Seconds      Memory Limit: 65536 KB Bob is a freshman in Marjar University. He is clever and diligent. However, he is not good at math, especially in Mathematical Analysis. After a mid-term exam, Bob was anxious about his

2014ACM/ICPC亚洲区域赛牡丹江站现场赛-K ( ZOJ 3829 ) Known Notation

Known Notation Time Limit: 2 Seconds      Memory Limit: 65536 KB Do you know reverse Polish notation (RPN)? It is a known notation in the area of mathematics and computer science. It is also known as postfix notation since every operator in an expres

2014ACM/ICPC亚洲区域赛牡丹江站总结

我在集训队里面也就一般水平,这次学校史无前例的拿到了8个名额,由于大三的只有两个队伍,所以我们13及能分到名额,由于13及人数很多,组长就按照谁在oj上面a的题多就让谁去,我和tyh,sxk,doubleq幸运的在大二就有机会参加亚洲现场赛,非常激动.牡丹江赛区是我和sxk和doubleq组成rainbow战队,我们对这次区域赛其实就是去张张见识,增加大赛经验(外加公费旅游2333),可是当我们真正来到赛场的时候不知道为上面我非常渴望拿一块牌子.第一天热身赛,double迅速切下水题,我一直再弄

2014ACM/ICPC亚洲区域赛牡丹江站汇总

球队内线我也总水平,这所学校得到了前所未有的8地方,因为只有两个少年队.因此,我们13并且可以被分配到的地方,因为13和非常大的数目.据领队谁oj在之上a谁去让更多的冠军.我和tyh,sxk,doubleq运的在大二就有机会參加亚洲现场赛,非常激动.牡丹江赛区是我和sxk和doubleq组成rainbow战队,我们对这次区域赛事实上就是去张张见识,添加大赛经验(外加公费旅游2333),但是当我们真正来到赛场的时候不知道为上面我非常渴望拿一块牌子. 第一天热身赛,double迅速切下水题.我一直再

2014ACM/ICPC亚洲区域赛牡丹江现场赛总结

不知道如何说起-- 感觉还没那个比赛的感觉呢?现在就结束了. 9号.10号的时候学校还评比国奖.励志奖啥的,因为要来比赛,所以那些事情队友的国奖不能答辩,自己的励志奖班里乱搞要投票,自己又不在,真是无语了--烦得要死,然后在这些事情还没处理好之前我们就这样10号中午从地大去北京站上火车了--那时真感觉这场带着这种心情来现场赛感觉要打铁了-- 然后10号晚上队友的国奖让琦神帮答辩完了,得国奖无疑了,然后自己的励志奖也定下来一定得了,在火车上的我们也松了一口气,不能因为来比赛国奖励志奖都不得是不--

2014ACM/ICPC亚洲区域赛牡丹江站D和K题

Known Notation Time Limit: 2 Seconds      Memory Limit: 131072 KB Do you know reverse Polish notation (RPN)? It is a known notation in the area of mathematics and computer science. It is also known as postfix notation since every operator in an expre

ZOJ3822 ACM-ICPC 2014 亚洲区域赛牡丹江赛区现场赛D题Domination 概率DP(两种解法)

题目地址:点击打开链接 这道题有两种做法,第一种是直接求期望,类似于poj 2096 区别在于这个步数有限.所以要迭代步数. #include <cstdio> #include <cstring> #include <iostream> #define maxn 55//这里刚开始写成了50+10 那么maxn*maxn就会小很多wa了一次 using namespace std; double dp[maxn][maxn][maxn*maxn]; int N,M,T

zoj 3827 Information Entropy(2014牡丹江区域赛I题)

Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy. Entropy is t

ZOJ 3827 Information Entropy (2014牡丹江区域赛)

题目链接:ZOJ 3827 Information Entropy 根据题目的公式算吧,那个极限是0 AC代码: #include <stdio.h> #include <string.h> #include <math.h> const double e=exp(1.0); double find(char op[]) { if(op[0]=='b') return 2.0; else if(op[0]=='n') return e; else if(op[0]=='