由二叉树的前序遍历和后序遍历来求后序遍历的结果

假设有棵树,长下面这个样子,它的前序遍历,中序遍历,后续遍历都很容易知道。

PreOrder:         GDAFEMHZ

InOrder:            ADEFGHMZ

PostOrder:       AEFDHZMG

现在,假设仅仅知道前序和中序遍历,如何求后序遍历呢?比如,已知一棵树的前序遍历是”GDAFEMHZ”,而中序遍历是”ADEFGHMZ”应该如何求后续遍历?

第一步,root最简单,前序遍历的第一节点G就是root。

第二步,继续观察前序遍历GDAFEMHZ,除了知道G是root,剩下的节点必然是root的左右子树之外,没法找到更多信息了。

第三步,那就观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

第四步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

第五步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的右子树的第一个节点就是右子树的根节点。

如何知道哪里是前序遍历中的左子树和右子树的分界线呢?通过中序遍历去数节点的个数。

在上一次中序遍历中,root左侧是A、D、E、F,所以有4个节点位于root左侧。那么在前序遍历中,必然是第1个是G,第2到第5个由A、D、E、F过程,第6个就是root的右子树的根节点了,是M。

第六步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。

第七步,其实,如果仅仅要求写后续遍历,甚至不要专门占用空间保存还原后的树。只需要稍微改动第六步,就能实现要求。仅需要把第六步的递归的过程改动为如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

// size是这棵树的节点个数
BinTree* CreateBinTree(char* pre,char* inorder,int size)
{
	if( size == 0)
		return NULL;
	BinTree* root  = new BinTree;
	root->left = NULL;
	root->right = NULL;
	root->value = pre[0];
	int i;
	for(i= 0;i<size;i++)
		if(inorder[i] == pre[0])
			break;

 	root->left = CreateBinTree(pre+1,inorder,i);

	root->right = CreateBinTree(pre+1+i,inorder+i+1,size-i-1);

	return root;

}
int main()
{
	char pre[]="ABDGCEFH";
	char inorder[]="DGBAECHF";

	BinTree* root = CreateBinTree(pre,inorder,8);
	Postorder(root);
	return 0;
}

其实上面的代码写得不够简洁。题目只要求输出后续遍历,并没有要求建树。所以,不需要去计算出node->left与node->right,也不需要去return node。改进版本如下

struct TreeNode
{
  struct TreeNode* left;
  struct TreeNode* right;
  char  elem;
};

void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
{
  if(length == 0)
    {
      //cout<<"invalid length";
	  return;
    }
  TreeNode* node = new TreeNode;//Noice that [new] should be written out.
  node->elem = *preorder;
  int rootIndex = 0;
  for(;rootIndex < length; rootIndex++)
    {
      if(inorder[rootIndex] == *preorder)
      break;
    }
  //Left
  BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);
  //Right
  BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
  cout<<node->elem<<endl;
  delete node;
  return;
}

int main(int argc, char* argv[])
{
	printf("Hello World!\n");
	char* pr="GDAFEMHZ";
	char* in="ADEFGHMZ";

    BinaryTreeFromOrderings(in, pr, 8);

    printf("\n");
	return 0;
}

再考虑一下,题目只要求输出后续遍历,所以其实连建立node也是没有必要的。可以直接把当前节点的value保存在一个char中,然后输出。

#include <stdio.h>
#include <stdio.h>
#include <iostream>
using namespace std;
struct TreeNode
{
  struct TreeNode* left;
  struct TreeNode* right;
  char  elem;
};

void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
{
  if(length == 0)
    {
      //cout<<"invalid length";
      return;
    }
  char node_value = *preorder;
  int rootIndex = 0;
  for(;rootIndex < length; rootIndex++)
    {
      if(inorder[rootIndex] == *preorder)
      break;
    }
  //Left
  BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);
  //Right
  BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
  cout<<node_value<<endl;
  return;
}

int main(int argc, char* argv[])
{
    printf("Hello World!\n");
    char* pr="GDAFEMHZ";
    char* in="ADEFGHMZ";

    BinaryTreeFromOrderings(in, pr, 8);

    printf("\n");
    return 0;
}
时间: 2024-10-04 20:43:54

由二叉树的前序遍历和后序遍历来求后序遍历的结果的相关文章

HLG2040二叉树遍历已知前中,求后

二叉树的遍历 Time Limit: 1000 MS Memory Limit: 32768 K Total Submit: 60(34 users) Total Accepted: 34(30 users) Rating: Special Judge: No Description 给出一棵二叉树的中序和前序遍历,输出它的后序遍历. Input 本题有多组数据,输入处理到文件结束. 每组数据的第一行包括一个整数n,表示这棵二叉树一共有n个节点. 接下来的一行每行包括n个整数,表示这棵树的中序遍

关于二叉树的问题1-已知前序,中序求后序遍历

对于一棵二叉树而言,可以由其前序和中序或者中序和后序的遍历序列,确定一棵二叉树. 那么对于已知前序和中序序列,求后序序列也就是先还原二叉树,然后对其进行后序遍历即可. 二叉树结点的结构定义如下: struct TreeNode { char value; TreeNode *leftChild; TreeNode *rightChild; }; 实现代码如下: #include <stdio.h> #include <string.h> #include <stdlib.h&

已知二叉树的中序遍历和先序/后序遍历求后序/先序

已知两种遍历序列求原始二叉树 算法思想: 需要明确的前提条件 通过先序和中序可以求出原始二叉树 通过中序和后序可以求出原始二叉树 但是通过先序和后序无法还原出二叉树 换种说法: 只有通过先序中序或者后序中序才可以确定一个二叉树 先来看一个例子,已知先序遍历序列和中序遍历序列求后序遍历: 先序:ABCDEFGH 中序:BDCEAFHG 求后序: 分析:要求后序遍历序列,必须求出原始二叉树 先看先序序列A第一个出现,有先序遍历的定义可以知道A是根结点 再看中序遍历,A的左边是BDCE,而A的右边是F

二叉树各种相关操作(建立二叉树、前序、中序、后序、求二叉树的深度、查找二叉树节点,层次遍历二叉树等)(C语言版)

将二叉树相关的操作集中在一个实例里,有助于理解有关二叉树的相关操作: 1.定义树的结构体: 1 typedef struct TreeNode{ 2 int data; 3 struct TreeNode *left; 4 struct TreeNode *right; 5 }TreeNode; 2.创建根节点: 1 TreeNode *creatRoot(){ 2 TreeNode * root =(TreeNode *)malloc(sizeof(TreeNode)); 3 if(NULL=

(原)neuq oj 1022给定二叉树的前序遍历和后序遍历确定二叉树的个数

题目描述 众所周知,遍历一棵二叉树就是按某条搜索路径巡访其中每个结点,使得每个结点均被访问一次,而且仅被访问一次.最常使用的有三种遍历的方式: 1.前序遍历:若二叉树为空,则空操作:否则先访问根结点,接着前序遍历左子树,最后再前序遍历右子树. 2.中序遍历:若二叉树为空,则空操作:否则先中序遍历左子树,接着访问根结点,最后再前中遍历右子树. 3.后序遍历:若二叉树为空,则空操作:否则先后序遍历左子树,接着后序遍历右子树,最后再访问根结点. 现在的问题是给定前序遍历和后序遍历的顺序,要求出总共有多

二叉树的前序、中序、后序遍历的递归和非递归算法实现

1 /** 2 * 二叉树的前序.中序.后序遍历的递归和非递归算法实现 3 **/ 4 5 //二叉链表存储 6 struct BTNode 7 { 8 struct BTNode *LChild; // 指向左孩子指针 9 ELEMENTTYPE data; // 结点数据 10 struct BTNode *RChild; // 指向右孩子指针 11 }; 12 13 /** 14 * 前序遍历 15 **/ 16 // 递归实现 17 void PreorderTraversal(BTNo

二叉树的前序中序后序遍历相互求法

二叉树的前中后序遍历,他们的递归非递归.还有广度遍历,参见二叉树的前中后序遍历迭代&广度遍历和二叉树的前中后序遍历简单的递归 现在记录已知二叉树的前序中序后序遍历的两个,求另外一个.一般,这两个中一定有中序遍历. 1.已知前序和中序,求后序遍历: 前序:ABDECFG  中序:DBEAFCG 思路简单:前序的第一个节点就是根节点, 中序中找到根节点的位置,根节点之前是其左子树,之后是右子树   按此顺序,依次在左子树部分遍历,右子树部分遍历 C++ 代码: TreeNode *BinaryTre

二叉树的前序、中序、后序遍历(递归、非递归)实现

本文部分来源于CSDN兰亭风雨大牛的原创.链接为http://blog.csdn.net/ns_code/article/details/12977901 二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的.二叉树有前.中.后三种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容易理解,但其开销也比较大,而若采用非递归方法实现三种遍历,则要用栈来模拟实现(递归也是用栈实现的).下面先简要介绍三种遍历方式的递归实现,再详细介绍三种遍

已知二叉树的前序遍历和中序遍历,如何得到它的后序遍历?

对一棵二叉树进行遍历,我们可以采取3中顺序进行遍历,分别是前序遍历.中序遍历和后序遍历.这三种方式是以访问父节点的顺序来进行命名的.假设父节点是N,左节点是L,右节点是R,那么对应的访问遍历顺序如下: 前序遍历    N->L->R 中序遍历    L->N->R 后序遍历    L->R->N /***************************************************************************************

笔试算法题(36):寻找一棵二叉树中最远节点的距离 &amp; 根据二叉树的前序和后序遍历重建二叉树

出题:求二叉树中距离最远的两个节点之间的距离,此处的距离定义为节点之间相隔的边数: 分析: 最远距离maxDis可能并不经过树的root节点,而树中的每一个节点都可能成为最远距离经过的子树的根节点:所以计算出以每个节点为根节点的子树的最 远距离,最后取他们的最大值就是整棵树的最远距离: 如果递归层次过多造成系统栈溢出,则可以使用stack堆栈结构存储递归节点,从而使用循环实现 解题: 1 struct Node { 2 int value; 3 Node *left; 4 Node *right