BZOJ 1041 [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点

Description

  求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

Input

  只有一个正整数n,n<=2000 000 000

Output

  整点个数

Sample Input

4

Sample Output

4


  鸣谢:http://blog.csdn.net/csyzcyj/article/details/10044629  http://hzwer.com/1457.html

  这么一到水题竟然卡了我一晚上,想起来确实是不可思议。

  样例图示:

  我们可以十分清晰的发现,这似乎就是一道算几题,但我们又很难下手。如果暴力枚举每个整数x,很明显会TLE。那怎么办呢?

  

  右上图可知,我们可以枚举2*d的因数,这是O(sqrt(n)),再去枚举界的个数。因为此处前提为x>0,y>0,所以最后结果为ans*4+4。

  因为涉及实数,所以屡调不顺,下次需多加注意。(floor一个实数结果仍为实数)

  

 1 /**************************************************************
 2     Problem: 1041
 3     User: Doggu
 4     Language: C++
 5     Result: Accepted
 6     Time:104 ms
 7     Memory:828 kb
 8 ****************************************************************/
 9
10 #include <cstdio>
11 #include <cmath>
12 long long n, ans;
13 inline long long gcd(long long a,long long b) {return b==0?a:gcd(b,a%b);}
14 int main() {
15     scanf("%lld",&n);
16     long long cou, b;
17     double t;
18     for( long long i = 1; i*i <= 2*n; i++ ) {
19         if(2*n%i==0) {
20             cou=i;
21             for( long long a = 1; 2*a*a < cou; a++ ) {
22                 t=sqrt(cou-a*a);
23                 if(t==floor(t)) {
24                     b=(long long)floor(t);
25                     if(a!=b&&gcd(a,b)==1) ans++;
26                 }
27             }
28             cou=2*n/i;
29             if(2*n/i==i) continue;
30             for( long long a = 1; 2*a*a < cou; a++ ) {
31                 t=sqrt(cou-a*a);
32                 if(t==floor(t)) {
33                     b=(long long)floor(t);
34                     if(a!=b&&gcd(a,b)==1) ans++;
35                 }
36             }
37         }
38     }
39     printf("%lld\n",ans*4+4);
40     return 0;
41 }

暴力枚举

时间: 2024-12-22 18:26:20

BZOJ 1041 [HAOI2008]圆上的整点的相关文章

BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Status][Discuss] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT 科普视频 So

bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Status] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input r Output 整点个数 Sample Input 4 Sample Output 4 HINT n<=2000 000 000 Source 這道題可用本原勾股數組解,由於本原

BZOJ 1041 HAOI2008 圆上的整点 数论

题目大意:给定一个半径为为r的圆x^2+y^2=r^2,求圆上多少个点的坐标为整数 卡了很久的一道题...我之前用了两个公式,理论上可以O(√n)出解,可惜这两个公式并不能涵盖所有勾股数... 于是去找了下题解,发现这样一种方法:(原帖地址: http://www.cppblog.com/zxb/archive/2010/10/18/130330.html ) x^2+y^2=r^2 化简为 y^2=(r-x)(r+x) 我们令d=gcd(r-x,r+x) 则(r-x)/d与(r+x)/d一定互

1041: [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Status][Discuss] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT 科普视频 /*

【BZOJ】 1041: [HAOI2008]圆上的整点

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 ${x^{2}+y^{2}=r^{2} }$ ${\Rightarrow y^{2}=(r-x)(r+x)}$ 令${d=gcd(r-x,r+x)}$ 则${y^{2}=d^{2}*\frac{r+x}{d}*\frac{r-x}{d}}$ 再令${A=\frac{r+x}{d}}$,${B=\frac{r-x}{d}}$ 则${y^{2}=d^{2}*A*B}$ 考虑${y^{2

【BZOJ 1041】 [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2196  Solved: 941 [Submit][Status] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input r Output 整点个数 Sample Input 4 Sample Output 4 HINT n<=2000 000 000 接下来枚举d,a,判断求出的b是否和题意即可

bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 = (R+Y)(R-Y) 令  d=gcd(R+Y,R-Y),A=(R+Y)/d,B=(R-Y)/d 则 gcd(A,B)=1,且A != B X^2= d^2 *A * B 所以 A * B 为 完全平方数 又因为 gcd(A,B)=1 ,A!=B,所以 A,B 都是 完全平方数 令 a= 根号A,b=根号

[HAOI2008]圆上的整点

题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 n<=2000 000 000 接下来枚举d,a 为什么要除d? 因为他们不互质,a*b是完全平方数≠a,b都是完全平方数 记住还要a*a,b*b互质 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring>

[BZOJ1041] [HAOI2008] 圆上的整点 (数学)

Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT Source Solution 网上有一个很好的证明 1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 5 ll gcd(ll a,