Problem 2075 Substring
Accept: 70 Submit: 236
Time Limit: 1000 mSec Memory Limit : 65536 KB
Problem Description
Given a string, find a substring of it which the original string contains exactly n such substrings.
Input
There are several cases. The first line of each case contains an integer n.The second line contains a string, no longer than 100000.
Output
If the such substring doesn‘t exist, output "impossible", else output the substring that appeared n times in the original string.If there are multiple solutions, output lexicographic smallest substring.
Sample Input
2ababba
Sample Output
ac代码
<pre name="code" class="cpp"><img src="" alt="" />、
<pre name="code" class="cpp">#include<stdio.h> #include<string.h> #include<algorithm> #include<iostream> #define min(a,b) (a>b?b:a) #define max(a,b) (a>b?a:b) using namespace std; char str[103030]; int sa[103030],Rank[103030],rank2[103030],height[103030],c[103030],*x,*y; int n; void cmp(int n,int sz) { int i; memset(c,0,sizeof(c)); for(i=0;i<n;i++) c[x[y[i]]]++; for(i=1;i<sz;i++) c[i]+=c[i-1]; for(i=n-1;i>=0;i--) sa[--c[x[y[i]]]]=y[i]; } void build_sa(char *s,int n,int sz) { x=Rank,y=rank2; int i,j; for(i=0;i<n;i++) x[i]=s[i],y[i]=i; cmp(n,sz); int len; for(len=1;len<n;len<<=1) { int yid=0; for(i=n-len;i<n;i++) { y[yid++]=i; } for(i=0;i<n;i++) if(sa[i]>=len) y[yid++]=sa[i]-len; cmp(n,sz); swap(x,y); x[sa[0]]=yid=0; for(i=1;i<n;i++) { if(y[sa[i-1]]==y[sa[i]]&&sa[i-1]+len<n&&sa[i]+len<n&&y[sa[i-1]+len]==y[sa[i]+len]) x[sa[i]]=yid; else x[sa[i]]=++yid; } sz=yid+1; if(sz>=n) break; } for(i=0;i<n;i++) Rank[i]=x[i]; } void getHeight(char *s,int n) { int k=0; for(int i=0;i<n;i++) { if(Rank[i]==0) continue; k=max(0,k-1); int j=sa[Rank[i]-1]; while(s[i+k]==s[j+k]) k++; height[Rank[i]]=k; } } int minv[103010][20],lg[103030]; void init_lg() { int i; lg[1]=0; for(i=2;i<102020;i++) { lg[i]=lg[i>>1]+1; } } void init_RMQ(int n) { int i,j,k; for(i=1;i<=n;i++) { minv[i][0]=height[i]; } for(j=1;j<=lg[n];j++) { for(k=0;k+(1<<j)-1<=n;k++) { minv[k][j]=min(minv[k][j-1],minv[k+(1<<(j-1))][j-1]); } } } int lcp(int l,int r) { l=Rank[l]; r=Rank[r]; if(l>r) swap(l,r); l++; int k=lg[r-l+1]; return min(minv[l][k],minv[r-(1<<k)+1][k]); } void solve(int n,int k) { int i,j; for(i=1;i<=n;i++) { if(i+k-1>n) break; int t=lcp(sa[i],sa[i+k-1]); if(t>height[i]&&(i+k>n||t+k<=n&&t>height[i+k])) { for(j=0;j<t;j++) { printf("%c",str[j+sa[i]]); } printf("\n"); return; } } printf("impossible\n"); } int main() { int n; while(scanf("%d",&n)!=EOF) { scanf("%s",str); int len=strlen(str); build_sa(str,len+1,128); getHeight(str,len); init_lg(); init_RMQ(len); solve(len,n); } }
Source
FOJ有奖月赛-2012年3月
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-11-09 15:48:19