深入集合框架之Hashtable源码剖析

为了分析ConcurrentHashMap,决定先分析一下Hashtable,两者都是线程安全的,必然会有不同的区别,Hashtable和HashMap也有很大的区别。

我们先来看看Hashtable吧。

成员变量:

 //存储单链表表头的数组,和HashMap中类似
    private transient Entry[] table;

    //Hashtable中实际元素的数量
    private transient int count;

    //Hashtable的临界值(容量* 加载因子).
    private int threshold;

    //加载因子
    private float loadFactor;

    //修改次数,提供fast-fail机制
    private transient int modCount = 0;

    //Hashtable的版本号
    private static final long serialVersionUID = 1421746759512286392L;

构造函数:

   //构造一个新的Hashtable,有指定的初始容量和加载因子。注意到没有设置Hashtable的最大容量是多少。
    public Hashtable(int initialCapacity, float loadFactor) {
	if (initialCapacity < 0)
	    throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);

        if (initialCapacity==0)
            initialCapacity = 1;
	this.loadFactor = loadFactor;
	table = new Entry[initialCapacity];
	threshold = (int)(initialCapacity * loadFactor);
    }

   //指定初始容量,和HashMap一样,加载因子是0.75
    public Hashtable(int initialCapacity) {
	this(initialCapacity, 0.75f);
    }

    //默认的无参构造,发现默认容量大小是11
    public Hashtable() {
	this(11, 0.75f);
  }
  //将指定Map集合传递给Hashtable,默认加载因子是0.75
    public Hashtable(Map<? extends K, ? extends V> t) {
	this(Math.max(2*t.size(), 11), 0.75f);
	putAll(t);
   } 

Hashtable解决冲突的单链表:

    private static class Entry<K,V> implements Map.Entry<K,V> {
	int hash;
	K key;
	V value;
	Entry<K,V> next;

	protected Entry(int hash, K key, V value, Entry<K,V> next) {
	    this.hash = hash;
	    this.key = key;
	    this.value = value;
	    this.next = next;
	}

    //复制,为了Hashtable的克隆,后面会看到
	protected Object clone() {
	    return new Entry<K,V>(hash, key, value,
				  (next==null ? null : (Entry<K,V>) next.clone()));
	}

	// Map.Entry Ops
	public K getKey() {
	    return key;
	}

	public V getValue() {
	    return value;
	}

	public V setValue(V value) {
       //如果为空抛出异常
	    if (value == null)
		throw new NullPointerException();

	    V oldValue = this.value;
	    this.value = value;
     //设置后返回旧值
	    return oldValue;
	}

     //若key和value都相等才返回true
	public boolean equals(Object o) {
	    if (!(o instanceof Map.Entry))
		return false;
	    Map.Entry e = (Map.Entry)o;

	    return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
	       (value==null ? e.getValue()==null : value.equals(e.getValue()));
	}

     //哈希值为键的哈希值异或值的哈希值
	public int hashCode() {
	    return hash ^ (value==null ? 0 : value.hashCode());
	}

	public String toString() {
	    return key.toString()+"="+value.toString();
	}
    }

其他方法:

   //使用的同步函数进行控制
    public synchronized int size() {
	return count;
   }
   
   //判断是否为空
    public synchronized boolean isEmpty() {
	return count == 0;
   }
   //返回所有key的枚举对象
    public synchronized Enumeration<K> keys() {
	return this.<K>getEnumeration(KEYS);
   }
   //返回所有value的枚举对象
    public synchronized Enumeration<V> elements() {
	return this.<V>getEnumeration(VALUES);
   }
    //判断Hashtable中是否包含指定的对象
   public synchronized boolean contains(Object value) {
   //如果指定的对象时null,则抛出异常,说明Hashtable中不支持null键
	if (value == null) {
	    throw new NullPointerException();
	}
     //双重for遍历寻找,从后向前遍历数组,逐一遍历链表
	Entry tab[] = table;
	for (int i = tab.length ; i-- > 0 ;) {
	    for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
		if (e.value.equals(value)) {
		    return true;
		}
	    }
	}
	return false;
   }
    //与上面一样,因为实现了Map接口,所以需要实现此方法
    public boolean containsValue(Object value) {
	return contains(value);
   }
    //判断是否包含于指定key相同的键
    public synchronized boolean containsKey(Object key) {
	Entry tab[] = table;
	int hash = key.hashCode();   //这里的hash值直接采用key的hash值
    //数组中的索引值计算方法不同,此处与上0x7FFFFFFF是为了将负数(hashCode有可能是负数)转为正数
    //然后对数组长度取模
	int index = (hash & 0x7FFFFFFF) % tab.length;
	for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
	    if ((e.hash == hash) && e.key.equals(key)) {
		return true;
	    }
	}
	return false;
   }
   //提取与指定key相同的键,若没有返回null
    public synchronized V get(Object key) {
	Entry tab[] = table;
	int hash = key.hashCode();//取出key的hash值
	int index = (hash & 0x7FFFFFFF) % tab.length; //计算索引
   //搜索
	for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
	    if ((e.hash == hash) && e.key.equals(key)) {
		return e.value;
	    }
	}
	return null;
   }
   
   //调整Hashtable的大小
    protected void rehash() {
	int oldCapacity = table.length;
	Entry[] oldMap = table;
  //直接调整为原来的大小的2倍,至于为什么加1,在put某一个数的时候,发现需要调整,那么调整完后,还要把这个数给添加进去,1就是给那个数留的空间。
	int newCapacity = oldCapacity * 2 + 1;
	Entry[] newMap = new Entry[newCapacity];

	modCount++; //修改次数加1
	threshold = (int)(newCapacity * loadFactor); //重新设置临界值
	table = newMap; //重新赋引用

   //将旧值全部复制到新的Hashtable中
	for (int i = oldCapacity ; i-- > 0 ;) {
	    for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
		Entry<K,V> e = old;
		old = old.next;

		int index = (e.hash & 0x7FFFFFFF) % newCapacity;
		e.next = newMap[index];
		newMap[index] = e;
	    }
	}
   }
   //往里面put键值对
    public synchronized V put(K key, V value) {
	//同样,如果是null则抛出异常
	if (value == null) {
	    throw new NullPointerException();
	}

	// 如果key存在当前的Hashtable中,用对应的旧值替换新值
	Entry tab[] = table;
	int hash = key.hashCode();
	int index = (hash & 0x7FFFFFFF) % tab.length;
	for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
	    if ((e.hash == hash) && e.key.equals(key)) {
		V old = e.value;
		e.value = value;
		return old;
	    }
	}

	modCount++; //修改次数加1
    //如果Hashtable中总数量大于临界值
	if (count >= threshold) {
	    //扩容
	    rehash();

            tab = table;
            index = (hash & 0x7FFFFFFF) % tab.length;
	}

	// 将旧值放到新值的后面,新值放到头结点
	Entry<K,V> e = tab[index];
	tab[index] = new Entry<K,V>(hash, key, value, e);
	count++;
	return null;
   }
   //移除指定key键的元素
    public synchronized V remove(Object key) {
	Entry tab[] = table;
	int hash = key.hashCode(); //获取Hash值
	int index = (hash & 0x7FFFFFFF) % tab.length;//获取索引
	for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
	    if ((e.hash == hash) && e.key.equals(key)) {
		modCount++;
		if (prev != null) {
		    prev.next = e.next;
		} else {
    //如果删除头结点,将下一个直接赋给数组
		    tab[index] = e.next;
		}
		count--;
		V oldValue = e.value;
		e.value = null;
		return oldValue;
	    }
	}
	return null;
    }
   //将指定Map集合中的元素全部放入Hashtable中
    public synchronized void putAll(Map<? extends K, ? extends V> t) {
        for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
            put(e.getKey(), e.getValue());
   }
   
   //清空Hashtable
    public synchronized void clear() {
	Entry tab[] = table;
	modCount++;
	for (int index = tab.length; --index >= 0; )
	    tab[index] = null; //置为null
	count = 0;
    }
   //克隆一个Hashtable,浅克隆
    public synchronized Object clone() {
	try {
	    Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
	    t.table = new Entry[table.length];
	    for (int i = table.length ; i-- > 0 ; ) {
		t.table[i] = (table[i] != null)
		    ? (Entry<K,V>) table[i].clone() : null;
	    }
	    t.keySet = null;
	    t.entrySet = null;
            t.values = null;
	    t.modCount = 0;
	    return t;
	} catch (CloneNotSupportedException e) {
	    // this shouldn't happen, since we are Cloneable
	    throw new InternalError();
	}
   }
  
  //重写的toString,而HashMap的是继承自AbstractMap,最后做判断的时候略微不一样
  //HashMap是直接用迭代器判断hashNext,而Hashtable是判断个数
    public synchronized String toString() {
	int max = size() - 1;
	if (max == -1)
	    return "{}";

	StringBuilder sb = new StringBuilder();
	Iterator<Map.Entry<K,V>> it = entrySet().iterator();

	sb.append('{');
	for (int i = 0; ; i++) {
	    Map.Entry<K,V> e = it.next();
            K key = e.getKey();
            V value = e.getValue();
            sb.append(key   == this ? "(this Map)" : key.toString());
	    sb.append('=');
	    sb.append(value == this ? "(this Map)" : value.toString());

	    if (i == max)
		return sb.append('}').toString();
	    sb.append(", ");
	}
   }

先看三个常量:

    // 可以看到0是键,1是值,2是键值对
    private static final int KEYS = 0;
    private static final int VALUES = 1;
  private static final int ENTRIES = 2;

遍历方法:

 //返回Hashtable的枚举类对象,传入的参数是类型,表示是键还是值,还是键值
   private <T> Enumeration<T> getEnumeration(int type) {
	if (count == 0) {
	    return (Enumeration<T>)emptyEnumerator;
	} else {
	    return new Enumerator<T>(type, false);
	}
   }
   //返回迭代器
      private <T> Iterator<T> getIterator(int type) {
	if (count == 0) {
	    return (Iterator<T>) emptyIterator;
	} else {
	    return new Enumerator<T>(type, true);
	}
       }
     //Hashtable中所有键的集合
   private transient volatile Set<K> keySet = null;
   //Hashtable中所有键值对的集合
       private transient volatile Set<Map.Entry<K,V>> entrySet = null;
       private transient volatile Collection<V> values = null; //所有值的集合
   
   
   //返回所有键的集合,调用Collections的synchronizedSet,这样就给keySet中的所有方法全部加上synchronized 实现同步
     public Set<K> keySet() {
	 if (keySet == null)
	      keySet = Collections.synchronizedSet(new KeySet(), this);
	 return keySet;
      }
   
   //定义的keySet类继承AbstractSet
      private class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
	    return getIterator(KEYS);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return Hashtable.this.remove(o) != null;
        }
        public void clear() {
            Hashtable.this.clear();
        }
       }
   
     //返回Hashtable中的键值对集合,自动给
     public Set<Map.Entry<K,V>> entrySet() {
	 if (entrySet==null)
	      entrySet = Collections.synchronizedSet(new EntrySet(), this);
	 return entrySet;
     }

  //定义的EntrySet类
    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
	    return getIterator(ENTRIES);
        }

	public boolean add(Map.Entry<K,V> o) {
	    return super.add(o);
	}

  //判断entrySet中是否包含指定的对象
  // 同样要获取哈希值,计算按索引
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry entry = (Map.Entry)o;
            Object key = entry.getKey();
            Entry[] tab = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
      //查找Entry对象是否在entryset
            for (Entry e = tab[index]; e != null; e = e.next)
                if (e.hash==hash && e.equals(entry))
                    return true;
            return false;
        }

     //将存在的对象删除
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
	    K key = entry.getKey();
            Entry[] tab = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;

            for (Entry<K,V> e = tab[index], prev = null; e != null;
                 prev = e, e = e.next) {
                if (e.hash==hash && e.equals(entry)) {
                    modCount++;
                    if (prev != null)
                        prev.next = e.next;
                    else
                        tab[index] = e.next;

                    count--;
                    e.value = null;
                    return true;
                }
            }
            return false;
        }

        public int size() {
            return count;
        }

        public void clear() {
            Hashtable.this.clear();
        }
       }
   
   
   
   
   //返回Hashtable中所有值的集合,用synchronized修饰,保证其所有方法都是同步的
    public Collection<V> values() {
	if (values==null)
	    values = Collections.synchronizedCollection(new ValueCollection(),
                                                        this);
        return values;
    }

    private class ValueCollection extends AbstractCollection<V> {
        public Iterator<V> iterator() {
	    return getIterator(VALUES);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }
    //依次遍历Hashtable的entrySet的集合
    public synchronized boolean equals(Object o) {
	if (o == this)
	    return true;
	if (!(o instanceof Map))
	    return false;
	Map<K,V> t = (Map<K,V>) o;
	if (t.size() != size())
	    return false;
        try {
            Iterator<Map.Entry<K,V>> i = entrySet().iterator();
            while (i.hasNext()) {
                Map.Entry<K,V> e = i.next();
                K key = e.getKey();
                V value = e.getValue();
                if (value == null) {
                    if (!(t.get(key)==null && t.containsKey(key)))
                        return false;
                } else {
                    if (!value.equals(t.get(key)))
                        return false;
                }
            }
        } catch (ClassCastException unused)   {
            return false;
        } catch (NullPointerException unused) {
            return false;
        }
	return true;
    }
   //这是hashCode的计算
    public synchronized int hashCode() {

        int h = 0;
   //若Hashtable为空,或者加载因子小于0,则返回0
        if (count == 0 || loadFactor < 0)
            return h;  // Returns zero
        loadFactor = -loadFactor;  // Mark hashCode computation in progress
        Entry[] tab = table;
        for (int i = 0; i < tab.length; i++)
            for (Entry e = tab[i]; e != null; e = e.next)
   //每个key的hash值和value的hash值异或相加
                h += e.key.hashCode() ^ e.value.hashCode();
        loadFactor = -loadFactor;  // Mark hashCode computation complete
	return h;
    }
   //序列化,将Hashtable的实际长度,哈希数组的长度,以及每个链表的值都写入
    private synchronized void writeObject(java.io.ObjectOutputStream s)
        throws IOException
    {
	// Write out the length, threshold, loadfactor
	s.defaultWriteObject();
	// Write out length, count of elements and then the key/value objects
	s.writeInt(table.length);
	s.writeInt(count);
	for (int index = table.length-1; index >= 0; index--) {
	    Entry entry = table[index];
	    while (entry != null) {
		s.writeObject(entry.key);
		s.writeObject(entry.value);
		entry = entry.next;
	    }
	}
    }
    //将流中的数据依次读取出
    private void readObject(java.io.ObjectInputStream s)
         throws IOException, ClassNotFoundException
    {
	// Read in the length, threshold, and loadfactor
	s.defaultReadObject();
	// Read the original length of the array and number of elements
	int origlength = s.readInt();
	int elements = s.readInt();
	// Compute new size with a bit of room 5% to grow but
	// no larger than the original size.  Make the length
	// odd if it's large enough, this helps distribute the entries.
	// Guard against the length ending up zero, that's not valid.
	int length = (int)(elements * loadFactor) + (elements / 20) + 3;
	if (length > elements && (length & 1) == 0)
	    length--;
	if (origlength > 0 && length > origlength)
	    length = origlength;
	Entry[] table = new Entry[length];
	count = 0;
	// Read the number of elements and then all the key/value objects
	for (; elements > 0; elements--) {
	    K key = (K)s.readObject();
	    V value = (V)s.readObject();
            // synch could be eliminated for performance
            reconstitutionPut(table, key, value);
	}
	this.table = table;
    }

Hashtable中的枚举类:

//给Hashtable提供了枚举遍历和迭代器遍历的好处
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
	Entry[] table = Hashtable.this.table;
	int index = table.length;
	Entry<K,V> entry = null;
	Entry<K,V> lastReturned = null;
	int type;

	//代表是迭代器还是枚举类,true代表迭代器,false代表枚举类
	boolean iterator;

	//提供fast-fail机制
	protected int expectedModCount = modCount;

	Enumerator(int type, boolean iterator) {
	    this.type = type;
	    this.iterator = iterator;
	}
  
  //向前遍历,是否还有别的数,直到找到null为止
	public boolean hasMoreElements() {
	    Entry<K,V> e = entry;
	    int i = index;
	    Entry[] t = table;
	    /* Use locals for faster loop iteration */
	    while (e == null && i > 0) {
		e = t[--i];
	    }
	    entry = e;
	    index = i;
	    return e != null;
	}

	public T nextElement() {
	    Entry<K,V> et = entry;
	    int i = index;
	    Entry[] t = table;
	    /* Use locals for faster loop iteration */
	    while (et == null && i > 0) {
		et = t[--i];
	    }
	    entry = et;
	    index = i;
	    if (et != null) {
		Entry<K,V> e = lastReturned = entry;
		entry = e.next;
		return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
	    }
	    throw new NoSuchElementException("Hashtable Enumerator");
	}

	// 迭代器的方法
	public boolean hasNext() {
	    return hasMoreElements();
	}

	public T next() {
	    if (modCount != expectedModCount)
		throw new ConcurrentModificationException();
	    return nextElement();
	}

//修改动作要加锁
	public void remove() {
	    if (!iterator)
		throw new UnsupportedOperationException();
	    if (lastReturned == null)
		throw new IllegalStateException("Hashtable Enumerator");
	    if (modCount != expectedModCount)
		throw new ConcurrentModificationException();

	    synchronized(Hashtable.this) {
		Entry[] tab = Hashtable.this.table;
		int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;

  //首先找到索引
		for (Entry<K,V> e = tab[index], prev = null; e != null;
		     prev = e, e = e.next) {
		    if (e == lastReturned) {
			modCount++;
			expectedModCount++;
			if (prev == null)
			    tab[index] = e.next;
			else
			    prev.next = e.next;
			count--;
			lastReturned = null;
			return;
		    }
		}
		throw new ConcurrentModificationException();
	    }
	}
    }

  //创建一个空的枚举对象
   private static Enumeration emptyEnumerator = new EmptyEnumerator();
   //创建一个空的迭代器对象
    private static Iterator emptyIterator = new EmptyIterator();

    //如果Hashtable大小为0,但是还要用枚举遍历,就返回一个空的枚举对象
    private static class EmptyEnumerator implements Enumeration<Object> {

	EmptyEnumerator() {
	}

	public boolean hasMoreElements() {
	    return false;
	}

	public Object nextElement() {
	    throw new NoSuchElementException("Hashtable Enumerator");
	}
    }

    //<span style="font-family: 宋体;">如果Hashtable大小为0,但是还要用迭代器遍历,就返回一个空的迭代器对象</span>
    private static class EmptyIterator implements Iterator<Object> {

	EmptyIterator() {
	}

	public boolean hasNext() {
	    return false;
	}

	public Object next() {
	    throw new NoSuchElementException("Hashtable Iterator");
	}

	public void remove() {
	    throw new IllegalStateException("Hashtable Iterator");
	}

    }
   

总结:

首先我们可以看到Hashtable中的方法都加了synchronized修饰,这就保证了线程的安全性,但是这在一定程度上也降低了效率,没有HashMap的效率高。

HashMap和Hashtable的几点区别:

1、在指定参数构造函数时Hashtable如果指定的参数大于2的30次方,则不会替换;而HashMap则会用2的30次方替换。当然,不出意外的话,两个都会堆溢出。

2、HashMap的默认容量大小是16,而Hashtable的是11

3、Hashtable中不支持<null,null>,会抛出空指针异常,但是HashMap中支持

4、增加、删除、查询等一系列操作,Hashtable会直接采用key的hash值,而HashMap则是重新计算Hash值

5、HashMap中的遍历方式只支持迭代器;Hashtable中遍历方式有迭代器和枚举。

6、二者在扩容时采用的策略不一样:HashMap中在扩容时是先将值添加到链表上,然后判断下一次是否需要扩容;而Hashtable是在添加的时候
  决定是否需要扩容,所以需要多分出来一个元素的空间。

7、Hashtable继承自Dictionary,而HashMap继承自AbstractMap。

......

如果要从源码上说区别,感觉是说不完了,点到为止吧。

若有遗漏重要的,还请大家指教。

版权声明:本文为博主原创文章,转载请注明出处。

时间: 2024-10-05 05:58:27

深入集合框架之Hashtable源码剖析的相关文章

深入集合框架之ArrayList源码剖析

ArrayList概述 ArrayList底层由数组实现,非线程安全,但是数组可以动态增加,也可以叫动态数组,提供了一系列的好处,我们来深入看看: 成员变量与构造函数 /** * 存储ArrayList内的数组 */ private transient Object[] elementData; /** * The size of the ArrayList (the number of elements it contains). * ArrayList中包含了多少元素 */ private

深入集合框架之HashMap源码剖析

简介 源码分析 HashMap是JAVA抽象出来存储键值对的集合,它的底层是哈希表,有哈希表就会有冲突,所以HashMap用单链表解决冲突,也就是拉链法. HashMap是不安全的,在多线程的环境下可用ConcurrentHashMap,或者利用Collections工具类中的同步方法. 先不急于说明其他的,我们先来分析一下单链表的构造 static class Entry<K,V> implements Map.Entry<K,V> { final K key;//存放键值对的键

深入集合框架之HashSet源码剖析

HashSet实现了Set接口,也就是说它存储的元素是无重复的. 通过源码分析我们可以发现HashSet就是HashMap的一个实例. 因为在HashMap中的键是不能重复的,我们可以把HashSet想象成HashMap中的键,而且事实也就是如此. 接下来我们具体分析一个构造函数: 版权声明:本文为博主原创文章,未经博主允许不得转载.

深入集合框架之CopyOnWriteArrayList源码剖析

CopyOnWriteArrayList概述 CopyOnWriteArrayList是ArrayList的一个线程安全的变种. CopyOnWriteArrayList与ArrayList不同处就在于是否会拷贝数组和加锁. CopyOnWriteArrayList顾名思义就是写时复制的ArrayList,其意思就是在修改容器的元素时,并不是直接在原数组上修改,而是先拷贝了一份数组,然后在拷贝的数组上进行修改,修改完后将其引用赋值给原数组的引用.这样体现了读写分离,这样无论在任何时候我们都可以对

转:【Java集合源码剖析】Hashtable源码剖析

转载请注明出处:http://blog.csdn.net/ns_code/article/details/36191279 Hashtable简介 Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长. Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中. Hashtable同样实现了Serializable接口,它支持序列化,实现了Cloneable接口,能被克隆.

【Java集合源码剖析】Hashtable源码剖析

Hashtable简介 Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长. Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中. Hashtable同样实现了Serializable接口,它支持序列化,实现了Cloneable接口,能被克隆. HashTable源码剖析 Hashtable的源码的很多实现都与HashMap差不多,源码如下(加入了比较详细的注释):

Hashtable源码剖析

Hashtable简介 Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长. Hashtable也是JDK1.0引入的类,是线程安全的,能用于多线程环境中. Hashtable同样实现了Serializable接口,它支持序列化,实现了Cloneable接口,能被克隆. HashTable源码剖析 Hashtable的源码的很多实现都与HashMap差不多,源码如下(加入了比较详细的注释):

【源码】Hashtable源码剖析

注:以下源码基于jdk1.7.0_11 上一篇分析了HashMap的源码,相信大家对HashMap都有了更深入的理解.本文将介绍Map集合的另一个常用类,Hashtable. Hashtable出来的比HashMap早,HashMap 1.2才有,而Hashtable在1.0就已经出现了.HashMap和Hashtable实现原理基本一样,都是通过哈希表实现.而且两者处理冲突的方式也一样,都是通过链表法.下面我们就详细介绍下这个类. 首先看类声明: public class Hashtable<

java集合框架09——HashTable和源码分析

上一章我们学习了HashMap的源码,这一节我们来讨论一下HashTable,HashTable和HashMap在某种程度上是类似的.我们依然遵循以下步骤:先对HashTable有个整体的认识,然后学习它的源码,深入剖析HashTable. 1.HashTable简介 首先看一下HashTable的继承关系 java.lang.Object ? java.util.Dictionary<K, V> ? java.util.Hashtable<K, V> public class H