Trie树详解

1、 概述

  Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树。Trie一词来自retrieve,发音为/tri:/ “tree”,也有人读为/tra?/ “try”。Trie树可以利用字符串的公共前缀来节约存储空间。如下图所示,该trie树用10个节点保存了6个字符串tea,ten,to,in,inn,int:

  在该trie树中,字符串in,inn和int的公共前缀是“in”,因此可以只存储一份“in”以节省空间。当然,如果系统中存在大量字符串且这些字符串基本没有公共前缀,则相应的trie树将非常消耗内存,这也是trie树的一个缺点。Trie树的基本性质可以归纳为:

  1. 根节点不包含字符,除根节点以外每个节点只包含一个字符。
  2. 从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。
  3. 每个节点的所有子节点包含的字符串不相同。

2、 Trie树的基本实现

  字母树的插入(Insert)、删除( Delete)和查找(Find)都非常简单,用一个一重循环即可,即第i次循环找到前i个字母所对应的子树,然后进行相应的操作。实现这棵字母树,我们用最常见的数组保存(静态开辟内存)即可,当然也可以开动态的指针类型(动态开辟内存)。 至于结点对儿子的指向,一般有三种方法:

  1. 对每个结点开一个字母集大小的数组,对应的下标是儿子所表示的字母,内容则是这个儿子对应在大数组上的位置,即标号;
  2. 对每个结点挂一个链表,按一定顺序记录每个儿子是谁;
  3. 使用左儿子右兄弟表示法记录这棵树。

  三种方法,各有特点。第一种易实现,但实际的空间要求较大;第二种,较易实现,空间要求相对较小,但比较费时;第三种,空间要求最小,但相对费时且不易写。

3、 Trie树的高级实现

  可以采用双数组(Double-Array)实现。利用双数组可以大大减小内存使用量,具体实现细节见参考资料(5)(6)。

4、 Trie树的应用

  Trie是一种非常简单高效的数据结构,但有大量的应用实例。

(1) 字符串检索

  事先将已知的一些字符串(字典)的有关信息保存到trie树里,查找另外一些未知字符串是否出现过或者出现频率。

  举例:

  • 给出N个单词组成的熟词表,以及一篇全用小写英文书写的文章,请你按最早出现的顺序写出所有不在熟词表中的生词。
  • 给出一个词典,其中的单词为不良单词。单词均为小写字母。再给出一段文本,文本的每一行也由小写字母构成。判断文本中是否含有任何不良单词。例如,若rob是不良单词,那么文本problem含有不良单词。

(2)字符串最长公共前缀

  Trie树利用多个字符串的公共前缀来节省存储空间,反之,当我们把大量字符串存储到一棵trie树上时,我们可以快速得到某些字符串的公共前缀。

举例:

  1. 给出N个小写英文字母串,以及Q个询问,即询问某两个串的最长公共前缀的长度是多少?

  解决方案:首先对所有的串建立其对应的字母树。此时发现,对于两个串的最长公共前缀的长度即它们所在结点的公共祖先个数,于是,问题就转化为了离线(Offline)的最近公共祖先(Least Common Ancestor,简称LCA)问题。

  而最近公共祖先问题同样是一个经典问题,可以用下面几种方法:

  1. 利用并查集(Disjoint Set),可以采用采用经典的Tarjan 算法;
  2. 求出字母树的欧拉序列(Euler Sequence )后,就可以转为经典的最小值查询(Range Minimum Query,简称RMQ)问题了;(关于并查集,Tarjan算法,RMQ问题,网上有很多资料。)

(3)排序

  Trie树是一棵多叉树,只要先序遍历整棵树,输出相应的字符串便是按字典序排序的结果。给你N个互不相同的仅由一个单词构成的英文名,让你将它们按字典序从小到大排序输出。

(4) 作为其他数据结构和算法的辅助结构

  如后缀树,AC自动机等

5、 Trie树复杂度分析

  1. 插入、查找的时间复杂度均为O(N),其中N为字符串长度。
  2. 空间复杂度是26^n级别的,非常庞大(可采用双数组实现改善)。

6、 总结

  Trie树是一种非常重要的数据结构,它在信息检索,字符串匹配等领域有广泛的应用,同时,它也是很多算法和复杂数据结构的基础,如后缀树,AC自动机等,因此,掌握Trie树这种数据结构,对于一名IT人员,显得非常基础且必要!

7.简单实现

package IO;

public class Trie {
    private int SIZE = 26;
    private TrieNode root;// 字典树的根
    Trie(){ // 初始化字典树
        root = new TrieNode();
    }

    private class TrieNode{ //字典树节点
        private int num;// 有多少单词通过这个节点,即由根至该节点组成的字符串模式出现的次数
        private TrieNode[] son;// 所有的儿子节点
        private boolean isEnd;// 是不是最后一个节点
        private char val;// 节点的值

        TrieNode() {
            num = 1;
            son = new TrieNode[SIZE];
            isEnd = false;
        }
    }

    // 建立字典树
    public void insert(String str){// 在字典树中插入一个单词
        if (str == null || str.length() == 0) {
            return;
        }
        TrieNode node = root;
        char[] letters = str.toCharArray();
        for (int i = 0, len = str.length(); i < len; i++) {
            int pos = letters[i] - ‘a‘;
            if (node.son[pos] == null) {
                node.son[pos] = new TrieNode();
                node.son[pos].val = letters[i];
            } else {
                node.son[pos].num++;
            }
            node = node.son[pos];
        }
        node.isEnd = true;
    }

    // 计算单词前缀的数量
    public int countPrefix(String prefix) {
        if (prefix == null || prefix.length() == 0) {
            return -1;
        }
        TrieNode node = root;
        char[] letters = prefix.toCharArray();
        for (int i = 0, len = prefix.length(); i < len; i++) {
            int pos = letters[i] - ‘a‘;
            if (node.son[pos] == null) {
                return 0;
            } else {
                node = node.son[pos];
            }
        }
        return node.num;
    }

    // 打印指定前缀的单词
    public String hasPrefix(String prefix) {
        if (prefix == null || prefix.length() == 0) {
            return null;
        }
        TrieNode node = root;
        char[] letters = prefix.toCharArray();
        for (int i = 0, len = prefix.length(); i < len; i++) {
            int pos = letters[i] - ‘a‘;
            if (node.son[pos] == null) {
                return null;
            } else {
                node = node.son[pos];
            }
        }
        preTraverse(node, prefix);
        return null;
    }

    // 遍历经过此节点的单词.
    public void preTraverse(TrieNode node, String prefix) {
        if (!node.isEnd) {
            for (TrieNode child : node.son) {
                if (child != null) {
                    preTraverse(child, prefix + child.val);
                }
            }
            return;
        }
        System.out.println(prefix);
    }

    // 在字典树中查找一个完全匹配的单词.
    public boolean has(String str) {
        if (str == null || str.length() == 0) {
            return false;
        }
        TrieNode node = root;
        char[] letters = str.toCharArray();
        for (int i = 0, len = str.length(); i < len; i++) {
            int pos = letters[i] - ‘a‘;
            if (node.son[pos] != null) {
                node = node.son[pos];
            } else {
                return false;
            }
        }
        return node.isEnd;
    }

    //前序遍历字典树.
    public void preTraverse(TrieNode node) {
        if (node != null) {
            System.out.print(node.val + "-");
            for (TrieNode child : node.son) {
                preTraverse(child);
            }
        }
    }

    public TrieNode getRoot() {
        return this.root;
    }

    public static void main(String[] args) {
        Trie tree = new Trie();
        String[] strs = { "banana", "band", "bee", "absolute", "acm", };
        String[] prefix = { "ba", "b", "band", "abc", };
        for (String str : strs) {
            tree.insert(str);
        }
        System.out.println(tree.has("abc"));
        tree.preTraverse(tree.getRoot());
        System.out.println();
        for (String pre : prefix) {
            int num = tree.countPrefix(pre);
            System.out.println(pre + "" + num);
        }
    }
}

时间: 2024-11-04 09:38:39

Trie树详解的相关文章

查找(二)简单清晰的B树、Trie树详解

查找(二) 散列表 散列表是普通数组概念的推广.由于对普通数组可以直接寻址,使得能在O(1)时间内访问数组中的任意位置.在散列表中,不是直接把关键字作为数组的下标,而是根据关键字计算出相应的下标. 使用散列的查找算法分为两步.第一步是用散列函数将被查找的键转化为数组的一个索引. 我们需要面对两个或多个键都会散列到相同的索引值的情况.因此,第二步就是一个处理碰撞冲突的过程,由两种经典解决碰撞的方法:拉链法和线性探测法. 散列表是算法在时间和空间上作出权衡的经典例子. 如果没有内存限制,我们可以直接

trie树--详解

前几天学习了并查集和trie树,这里总结一下trie.     本文讨论一棵最简单的trie树,基于英文26个字母组成的字符串,讨论插入字符串.判断前缀是否存在.查找字符串等基本操作:至于trie树的删除单个节点实在是少见,故在此不做详解. l        Trie原理 Trie的核心思想是空间换时间.利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的. l        Trie性质 好多人说trie的根节点不包含任何字符信息,我所习惯的trie根节点却是包含信息的,而且认为这样也

Trie树详解(转)

特别声明 本文只是一篇笔记类的文章,所以不存在什么抄袭之类的. 以下为我研究时参考过的链接(有很多,这里我只列出我记得的): Trie(字典树)的应用--查找联系人 trie树 Trie树:应用于统计和排序 牛人源码,研究代码来源 1.字典树的概念 字典树,因为它的搜索快捷的特性被单词搜索系统使用,故又称单词查找树.它是一种树形结构的数据结构.之所以快速,是因为它用空间代替了速度. 2.字典树的特点: 字典树有三个基本性质: 1.根节点不包含字符,除根节点外每一个节点都只包含一个字符2.从根节点

B树、Trie树详解

查找(二) 散列表 散列表是普通数组概念的推广.由于对普通数组可以直接寻址,使得能在O(1)时间内访问数组中的任意位置.在散列表中,不是直接把关键字作为数组的下标,而是根据关键字计算出相应的下标. 使用散列的查找算法分为两步.第一步是用散列函数将被查找的键转化为数组的一个索引. 我们需要面对两个或多个键都会散列到相同的索引值的情况.因此,第二步就是一个处理碰撞冲突的过程,由两种经典解决碰撞的方法:拉链法和线性探测法. 散列表是算法在时间和空间上作出权衡的经典例子. 如果没有内存限制,我们可以直接

《ACM/ICPC 算法训练教程》读书笔记 之 数据结构(线段树详解)

依然延续第一篇读书笔记,这一篇是基于<ACM/ICPC 算法训练教程>上关于线段树的讲解的总结和修改(这本书在线段树这里Error非常多),但是总体来说这本书关于具体算法的讲解和案例都是不错的. 线段树简介 这是一种二叉搜索树,类似于区间树,是一种描述线段的树形数据结构,也是ACMer必学的一种数据结构,主要用于查询对一段数据的处理和存储查询,对时间度的优化也是较为明显的,优化后的时间复杂为O(logN).此外,线段树还可以拓展为点树,ZWK线段树等等,与此类似的还有树状数组等等. 例如:要将

线段树详解 (原理,实现与应用)

线段树详解 By 岩之痕 目录: 一:综述 二:原理 三:递归实现 四:非递归原理 五:非递归实现 六:线段树解题模型 七:扫描线 八:可持久化 (主席树) 九:练习题 一:综述 假设有编号从1到n的n个点,每个点都存了一些信息,用[L,R]表示下标从L到R的这些点. 线段树的用处就是,对编号连续的一些点进行修改或者统计操作,修改和统计的复杂度都是O(log2(n)). 线段树的原理,就是,将[1,n]分解成若干特定的子区间(数量不超过4*n),然后,将每个区间[L,R]都分解为 少量特定的子区

字典树详解

字典树概述    字典树,又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种.典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高. 例题: NKOJ 1934 外地人     你考入大城市沙坪坝的学校, 但是沙坪坝的当地人说着一种很难懂的方言, 你完全听不懂. 幸好你手中有本字典可以帮你. 现在你有若干个听不懂的方言需要查询字典.输入

Merkle Patricia Tree (MPT) 树详解

1.    介绍 Merkle Patricia Tree(简称MPT树,实际上是一种trie前缀树)是以太坊中的一种加密认证的数据结构,可以用来存储所有的(key,value)对.以太坊区块的头部包括一个区块头,一个交易的列表和一个uncle区块的列表.在区块头部包括了交易的hash树根,用来校验交易的列表.在p2p网络上传输的交易是一个简单的列表,它们被组装成一个叫做trie树的特殊数据结构,来计算根hash.值得注意的是,除了校验区块外,这个数据结构并不是必须的,一旦区块被验证正确,那么它

组播学习笔记(五)源树+共享树详解

一.组播路由表主要内容: 1.源 2.目的 3.入接口 4.RPF接口 5.RPF邻居 二.pim协议 pim(协议无关协议),此处协议无关是指单播协议无关,PIM可以基于任意单播协议工作.注意,组播是基于单播进行工作的,虽有组播表但是最终是查找单播路由表寻找出口. IP协议号为103 不必发送组播更新,通过hello和hold,join报文来维持邻居关系,因此开销小. hello时间30s,发向224.0.0.13(所有开启pim的功能的交换机都会监听此地址) hold时间:3.5*30s=1