UVa 11971 Polygon (数学,转化)

题意:一根长度为n的木条,随机选k个位置将其切成k+1段,问这k+1段能组成k+1条边的多边形的概率。

析:这个题,很明显和 n 是没有任何关系的,因为无论 n 是多少那切多少段都可以,只与切多少段有关。然后我们要转化一下,不能直接做,因为不好做。

转化为一个圆上选 m+1 个点,能不能组成多边形,很容易知道如果一个边大于一半圆的周长,那就组不成多边形。然后位置是随便选的,概率就是1,

然后其他 m-1 个点,就只能放那一半上,每个都有1/2的概率,然后 m 个,就是1/(2^m),然后每个点都可能是最长的,所以再乘以(m+1),

这是组不成的概率,然后用总概率1减去,就是组成的概率。注意long long,刚开始忘了,WA了一次。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
using namespace std ;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const int mod = 1e9 + 7;
const int dr[] = {0, 0, -1, 1};
const int dc[] = {-1, 1, 0, 0};
int n, m;
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;
}

int main(){
    int T;  cin >> T;
    for(int kase = 1; kase <= T; ++kase){
        scanf("%d %d", &n, &m);
        LL a = m + 1;
        LL b = 1LL<<m;
        LL c = b - a;
        LL g = __gcd(c, b);
        printf("Case #%d: %lld/%lld\n", kase, c / g, b / g);
    }
    return 0;
}
时间: 2024-12-28 01:36:01

UVa 11971 Polygon (数学,转化)的相关文章

UVA 11971 - Polygon 数学概率

                                    Polygon  John has been given a segment of lenght N, however he needs a polygon. In order to create a polygonhe has cut given segment K times at random positions (uniformly distributed cuts). Now he has K + 1much sh

UVA 11971 - Polygon(概率+几何概型)

UVA 11971 - Polygon 题目链接 题意:给一条长为n的线段,要选k个点,分成k + 1段,问这k + 1段能组成k + 1边形的概率 思路:对于n边形而言,n - 1条边的和要大于另外那条边,然后先考虑3边和4边形的情况,根据公式在坐标系中画出来的图,总面积为x,而不满足的面积被分成几块,每块面积为x/2k,然后在观察发现一共是k + 1块,所以符合的面积为x?x?(k+1)/2k,这样一来除以总面积就得到了概率1?(k+1)/2k 代码: #include <cstdio>

uva 11971 - Polygon(线性规划)

题目连接:uva 11971 - Polygon 题目大意:给定一个长度为N的线段,要求切K刀,分成K+1个线段,问能组成K+1边形的概率. 解题思路:K条线段能组成K边形的条件为任意一条边小于其他所有边的和,因为是求概率,所以和N无关. 根据高中线性规划的知识,以二维为例: 所以有ans=2K?K?12K #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typ

Uva 11971 Polygon 想法

多边形的组成条件是最长边不能占边长总和的一半,将木棒想象成圆多砍一刀,然后是简单概率. Polygon Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Description U   - Polygon Time Limit: 1 sec Memory Limit: 32 MB John has been given a segment of lenght N, how

uva 11971 Polygon

https://vjudge.net/problem/UVA-11971 有一根长度为n的木条,随机选k个位置把它们切成k+1段小木条.求这些小木条能组成一个多边形的概率. 将木条看做一个圆,线上切k刀等价于圆上切k+1刀 如果能组成多边形,每一段木条的长度都要<圆周长/2 反过来,如果不能组成多边形,有且仅有一段长度>=圆周长/2 如图所示,第一刀可以随便切,接下来的每一刀都要在第一刀所在的那个半圆上 概率=(1/2)^k 每一个切点处,都可以断开成为线,共有k+1种断法 所以不能构成多边形

UVA 11054 The Necklace 转化成欧拉回路

题意比较简单,给你n个项链碎片,每个碎片的两半各有一种颜色,最后要把这n个碎片串成一个项链,要求就是相邻碎片必须是同种颜色挨着. 看了下碎片总共有1000个,颜色有50种,瞬间觉得普通方法是无法在可控时间内做出来的,因为碎片到底放哪里以及是正着放还是反着放都是不可控的. 这个时候数学建模就真的好重要了,如果我们能把颜色作为节点,一个碎片就表示两个节点连了一条路,那其实就是走了一遍欧拉回路,就意味着项链做成了. 太叼了,这个思想真心不错...LRJ书上的提示,否则我还真是想不到可以这样. 不过还有

UVa 11971 (概率) Polygon

题意: 有一根绳子,在上面随机选取k个切点,将其切成k+1段,求这些线段能够成k+1边形的概率. 分析: 要构成k+1边形,必须最长的线段小于其他k个线段之和才行. 紫书上给出了一种解法,但是感觉理解得不是太好,所以又去网上找了其他解法. 知乎上有人问过这个问题,而且给出了很多种严格的解法. 最后代码里将(1LL << i)写成(1 << i),这种细节应当注意. 1 #include <cstdio> 2 typedef long long ll; 3 4 ll gc

UVA 10089 Repackaging 数学问题

大致题意:给出几个包裹,每个包裹都包装好了3种大小的杯子.现在要重新包装,使向量 a[1]*(s[1][1],s[1][2],s[1][3])+a[2]*(s[2][1],s[2][2],s[2][3])+.....+a[n]*(s[n][1],s[n][2],s[n][3])=(k,k,k). 就这样转化成了向量问题其中a[i]为非负整数,k为正整数. 虽然转化成了向量问题,但是三维向量和这么多变量有点棘手,所以我们可以先降维,将原等式变化成: a[1]*(s[1][2]-s[1][1],s[

UVA 11346 - Probability 数学积分

Consider rectangular coordinate system and point L(X, Y ) which is randomly chosen among all pointsin the area A which is de?ned in the following manner: A = {(x, y)|x ∈ [−a; a];y ∈ [−b; b]}. What isthe probability P that the area of a rectangle that