UVA - 1213
Description A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n andk, When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, Your job is to write a program that reports the number of such ways for the given n and k. InputThe input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated OutputThe output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of ways for n and k specified Sample Input24 3 24 2 2 1 1 1 4 2 18 3 17 1 17 3 17 4 100 5 1000 10 1120 14 0 0 Sample Output2 3 1 0 0 2 1 0 1 55 200102899 2079324314 Source Root :: AOAPC II: Beginning Algorithm Contests (Second Edition) (Rujia Liu) :: Chapter 10. Maths :: Exercises Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: Problem Solving Paradigms :: Dynamic Programming :: 0-1 Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: Problem Solving Paradigms :: Dynamic Programming :: 0-1 |
题意是选择k个质数使其和为n,先搞一个素数表然后dp,dp[i][j]表示选了j个数和位i的方案数。
#include <bits/stdc++.h> #define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it) using namespace std; typedef long long ll; const int maxn = 1120; bool check[maxn]; int prime[1120]; ll dp[1122][15]; int init(int n) { memset(check,0,sizeof check); int tot = 0; check[0] = check[1] = 1; for(int i = 2; i <= n; i++) { if(!check[i])prime[tot++] = i; for(int j = 0; j < tot; ++j) { if((ll)i*prime[j]>n)break; check[i*prime[j]] = true; if(i%prime[j]==0)break; } } return tot; } int main() { int n,k; int tot = init(maxn-1); while(~scanf("%d%d",&n,&k)&&n) { memset(dp,0,sizeof dp); dp[0][0] = 1; for(int i = 0; prime[i]<=n&&i < tot; i++) { int limt = min(i+1,k); int w = prime[i]; for(int V = n; V >= w; V--) for(int j = 1; j <= limt; j++)if(dp[V-w][j-1]){ dp[V][j] += dp[V-w][j-1]; } } cout<<dp[n][k]<<endl; } return 0; }