【四边形不等式】HDU3506-Monkey Party

【题目大意】

香蕉森林里一群猴子(n<=1000)围成一圈开会,会长给他们互相介绍,每个猴子需要时间a[i]。每次只能介绍相邻的两只猴子x和y认识,同时x所有认识的猴子和y所有认识的猴子也就相互认识了,代价为这两伙猴子认识的时间(a[])之和。求这群猴子都互相认识的最短时间。

【思路】

四边形不等式笔记ψ(._. )>

四边形不等式标准转移方程格式:

W(i,j )要满足四边形不等式,当且仅当同时满足:
①j 不变时,f(i) = w(i, j + 1) - w(i, j)单调递减。
②i 不变时,f(j) = w(i + 1, j) - w(i, j)单调递减。

遇到环的问题就把原数组复制一遍,数组长度增加一倍。
dp[i][j]表示从i到j的猴子都是朋友的最小所需时间,sum[i]为前缀。
dp[i][j]=min(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]),其中w[i,j] =sum[j]-sum[i-1]。

显然满足四边形不等式o(* ̄︶ ̄*)o

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6 const int MAXN=1000+50;
 7 const int INF=0x7fffffff;
 8 int n;
 9 int a[MAXN*2],sum[MAXN*2];
10 int dp[MAXN*2][MAXN*2],s[MAXN*2][MAXN*2];
11
12 void init()
13 {
14     for (int i=1;i<=n;i++)
15     {
16         scanf("%d",&a[i]);
17         a[i+n]=a[i];
18     }
19     sum[0]=0;
20     for (int i=1;i<=2*n;i++) sum[i]=sum[i-1]+a[i];
21 }
22
23 void solve()
24 {
25     memset(dp,0,sizeof(dp));
26     memset(s,0,sizeof(s));
27     for (int i=1;i<=2*n;i++) s[i][i]=i;
28     for (int i=2*n;i>=1;i--)
29     {
30         for (int j=i+1;j<=2*n;j++)
31         {
32             dp[i][j]=INF;
33             for (int k=s[i][j-1];k<=s[i+1][j];k++)
34             {
35                 if (dp[i][j]>dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1])
36                 {
37                     s[i][j]=k;
38                     dp[i][j]=dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1];
39                 }
40             }
41         }
42     }
43     int ans=INF;
44     for (int i=1;i<=n;i++) ans=min(ans,dp[i][i+n-1]);
45     printf("%d\n",ans);
46 }
47
48 int main()
49 {
50     while (scanf("%d",&n)!=EOF)
51     {
52         init();
53         solve();
54     }
55     return 0;
56 }
时间: 2024-10-13 11:43:10

【四边形不等式】HDU3506-Monkey Party的相关文章

HDU 3506 DP 四边形不等式优化 Monkey Party

环形石子合并问题. 有一种方法是取模,而如果空间允许的话(或者滚动数组),可以把长度为n个换拓展成长为2n-1的直线. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 6 using namespace std; 7 8 const int maxn = 2000 + 10; 9 const int INF = 0x3f3f3f3f

HDU-3506 二维四边形不等式

Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 2665    Accepted Submission(s): 1074 Problem Description Far away from our world, there is a banana forest. And many lovely monkeys

hdu 3506 Monkey Party 区间dp + 四边形不等式优化

http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_nTDz7pP9xCeHnd062vNwVT830z4_aQoZxsCcRtac6CLzbPYLNImi5QAjF2k9ydjqdFf7wlh29GJffeyG8rUh-Y1c3xWRi0AKFNKSrtj3ZY7mtdp9n5W7M6BBjoINA-DdplWWEPSK#1 dp[i][j]表示第

四边形不等式优化

四边形不等式优化条件(转自这里) 在动态规划中,经常遇到形如下式的转台转移方程: m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max) 上述的m(i,j)表示区间[i,j]上的某个最优值.w(i,j)表示在转移时需要额外付出的代价.该方程的时间复杂度为O(N^3). 下面我们通过四边形不等式来优化上述方程,首先介绍什么是"区间包含的单调性"和"四边形不等式" (1)区间包含的单调性:如果对于i≤i'<j≤

四边形不等式(石子合并)

动态规区间dp做这道题的话应该是n^3,下面的代码优化到了n^2,用四边形不等式优化. 设mid[i][j]是dp[i][j]的最优解的断点,即它左区间的右端点,那么mid[i][j-1]<=mid[i][j]<=mid[i+1][j],所以在求解dp[i][j]时,枚举k可以只枚举这两个值之间枚举就好, 程序要先枚举区间长度,在枚举左端点,枚举每个区间长度时,他们的k总是只从1到n,只走一遍,所以这就相当于优化了一层,变成了O(n2)的. 比如len长度为3时,dp[1][3]只会枚举mid

【四边形不等式】POJ1160[IOI2000]-Post Office

[题目大意] v个村庄p个邮局,邮局在村庄里,给出村庄的位置,求每个村庄到最近邮局距离之和的最小值. [思路] 四边形不等式,虽然我并不会证明:( dp[i][j]表示前i个村庄建j个邮局的最小值,w[i][j]表示在i到j之间建立一个邮局的最小值.w[i][j]显然取i~j的中位数,可以在O(1)时间内求出. 显然dp[i][j]=min{dp[k][j-1]+w[k+1][i]}. 傻傻写错i和j…… 1 #include<iostream> 2 #include<cstdio>

四边形不等式优化DP——石子合并问题 学习笔记

好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 求出将n堆石子合并成一堆的最小得分和最大得分以及相应的合并方案. 设m[i,j]表示合并d[i..j]所得到的最小得分. 状态转移方程: 总的时间复杂度为O(n3). [优化方案] 四边形不等式: m[i,j]满足四边形不等式 令s[i,j]=max{k | m[

UVa 10003 (可用四边形不等式优化) Cutting Sticks

题意: 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用. 分析: d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用.则有d(i, j) = min{d(i, k) + d(k, j)} + a[j] - a[i]; ( i < k < j ) 最后一项是第一刀的费用. 时间复杂度为O(n3) 最后还要注意一下输出格式中整数后面还要加一个句点. 1 //#define LOCAL 2 #include <iostream>

51nod 1022 石子归并 V2(四边形不等式)

分析:记dp[i][j]为从i到j合并的最小代价(顺时针,i可以大于j),sum[i][j]为从i到j的和,则dp[i][j]=min{dp[i][k-1]+dp[k][j]}+sum[i][j],(i<k<=j),直接求的话复杂度为O(n^3),会T. 四边形不等式优化:记s[i][j]为dp[i][j]取得最小值时对应的k值,则有dp[i][j]=min{dp[i][k-1]+dp[k][j]}+sum[i][j],(s[i][j-1]<=k<=s[i+1][j]),可以证明,

HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程很容易想出来,dp[i][j] 表示前 j 个数分成 i 组.但是复杂度是三次方的,肯定会超时,就要对其进行优化. 有两种方式,一种是斜率对其进行优化,是一个很简单的斜率优化 dp[i][j] = min{dp[i-1][k] - w[k] + sum[k]*sum[k] - sum[k]*sum[